IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000159.html
   My bibliography  Save this article

Combining Structural Connectivity and Response Latencies to Model the Structure of the Visual System

Author

Listed:
  • Michael Capalbo
  • Eric Postma
  • Rainer Goebel

Abstract

Several approaches exist to ascertain the connectivity of the brain, and these approaches lead to markedly different topologies, often incompatible with each other. Specifically, recent single-cell recording results seem incompatible with current structural connectivity models. We present a novel method that combines anatomical and temporal constraints to generate biologically plausible connectivity patterns of the visual system of the macaque monkey. Our method takes structural connectivity data from the CoCoMac database and recent single-cell recording data as input and employs an optimization technique to arrive at a new connectivity pattern of the visual system that is in agreement with both types of experimental data. The new connectivity pattern yields a revised model that has fewer levels than current models. In addition, it introduces subcortical–cortical connections. We show that these connections are essential for explaining latency data, are consistent with our current knowledge of the structural connectivity of the visual system, and might explain recent functional imaging results in humans. Furthermore we show that the revised model is not underconstrained like previous models and can be extended to include newer data and other kinds of data. We conclude that the revised model of the connectivity of the visual system reflects current knowledge on the structure and function of the visual system and addresses some of the limitations of previous models.Author Summary: Visual perception is very important to us, something we can easily come to realize if we imagine ourselves blind. The visual system consists of numerous interconnected brain areas. If we are to understand the functioning of the visual system, then we will need to understand the connectivity between these areas. Current models of the visual system have a number of limitations. One of these is that the time it takes for the neural signal to reach a certain area often seems inconsistent with the place of that area in the overall structure of the system; e.g., the signal might arrive relatively quickly at an area generally located “higher” in the visual system and slowly at an area located in the “lower” part. We combine data about the known connectivity in the monkey brain with timing data to find a network structure that is consistent with both kinds of data. The results show that the timing data can be explained when the network contains direct routes from subcortical areas to “higher” cortical areas. We show that our model has fewer limitations than previous models and might explain unresolved issues in the study of connectivity in the human brain.

Suggested Citation

  • Michael Capalbo & Eric Postma & Rainer Goebel, 2008. "Combining Structural Connectivity and Response Latencies to Model the Structure of the Visual System," PLOS Computational Biology, Public Library of Science, vol. 4(8), pages 1-14, August.
  • Handle: RePEc:plo:pcbi00:1000159
    DOI: 10.1371/journal.pcbi.1000159
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000159
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000159&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcus Kaiser & Claus C Hilgetag, 2006. "Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems," PLOS Computational Biology, Public Library of Science, vol. 2(7), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashish Raj & Yu-hsien Chen, 2011. "The Wiring Economy Principle: Connectivity Determines Anatomy in the Human Brain," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-11, September.
    2. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    4. Xue Wen & Delong Zhang & Bishan Liang & Ruibin Zhang & Zengjian Wang & Junjing Wang & Ming Liu & Ruiwang Huang, 2015. "Reconfiguration of the Brain Functional Network Associated with Visual Task Demands," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    5. Kim, Sang-Yoon & Lim, Woochang, 2015. "Effect of small-world connectivity on fast sparsely synchronized cortical rhythms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 109-123.
    6. David Samu & Anil K Seth & Thomas Nowotny, 2014. "Influence of Wiring Cost on the Large-Scale Architecture of Human Cortical Connectivity," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-24, April.
    7. Guilherme Ramos & Sérgio Pequito, 2020. "Generating complex networks with time-to-control communities," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-12, August.
    8. Riccardo Muolo & Joseph D. O’Brien & Timoteo Carletti & Malbor Asllani, 2024. "Persistence of chimera states and the challenge for synchronization in real-world networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(1), pages 1-16, January.
    9. Logan Harriger & Martijn P van den Heuvel & Olaf Sporns, 2012. "Rich Club Organization of Macaque Cerebral Cortex and Its Role in Network Communication," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    10. Duan, Dongli & Wu, Xixi & Bai, Xue & Yan, Qi & Lv, Changchun & Bian, Genqing, 2022. "Dimensionality reduction method of dynamic networks for evolutionary mechanism of neuronal systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    11. Frank Emmert-Streib, 2013. "Structural Properties and Complexity of a New Network Class: Collatz Step Graphs," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-14, February.
    12. Türker, İlker, 2018. "Generating clustered scale-free networks using Poisson based localization of edges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 72-85.
    13. Michele Coscia, 2018. "Using arborescences to estimate hierarchicalness in directed complex networks," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-18, January.
    14. Raghavendra Singh & Seema Nagar & Amit A Nanavati, 2015. "Analysing Local Sparseness in the Macaque Brain Network," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    15. Julian M L Budd & Krisztina Kovács & Alex S Ferecskó & Péter Buzás & Ulf T Eysel & Zoltán F Kisvárday, 2010. "Neocortical Axon Arbors Trade-off Material and Conduction Delay Conservation," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-25, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.