IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v599y2022ics0378437122003119.html
   My bibliography  Save this article

Dimensionality reduction method of dynamic networks for evolutionary mechanism of neuronal systems

Author

Listed:
  • Duan, Dongli
  • Wu, Xixi
  • Bai, Xue
  • Yan, Qi
  • Lv, Changchun
  • Bian, Genqing

Abstract

Understanding the development process of biological neuronal systems is one of the major challenges to explore the formation mechanism of human brain intelligence and biological behaviors, which is of great importance to enlighten the designing of various artificial neural network algorithms as well. Here, with the whole neural connection map of C.elegans, we explore the evolutionary mechanism of its neuronal system based on mean-field theory and network dimension reduction method. Firstly, we use a set of activation equations to capture the neurons’ interaction in the networks, and adopt the dimensionality reduction framework to decouple the nematode’s multi-dimensional neural network into an one-dimensional system. Then we propose two control index after the system is decoupled, which can be used to describe the structure and stable state of the whole neural network, as well as the development of an organism on the basis of birth time and process length. Our theoretical approach of multidimensional system to the one-dimensional system can help distract our attention from the micro-dynamics of a single neuron to the macro-dynamics of the whole network. Our results reveal some factors that influence the evolution of neural system, explore the evolutionary constraints and contribution of these factors at the level of neural networks function and topology. In conclusion, our analytical framework provides an overview of quantitative understanding of the growth process and the evolutionary constraints in the neural system.

Suggested Citation

  • Duan, Dongli & Wu, Xixi & Bai, Xue & Yan, Qi & Lv, Changchun & Bian, Genqing, 2022. "Dimensionality reduction method of dynamic networks for evolutionary mechanism of neuronal systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
  • Handle: RePEc:eee:phsmap:v:599:y:2022:i:c:s0378437122003119
    DOI: 10.1016/j.physa.2022.127415
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122003119
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Erratum: Universal resilience patterns in complex networks," Nature, Nature, vol. 536(7615), pages 238-238, August.
    2. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Universal resilience patterns in complex networks," Nature, Nature, vol. 530(7590), pages 307-312, February.
    3. Gang Yan & Petra E. Vértes & Emma K. Towlson & Yee Lian Chew & Denise S. Walker & William R. Schafer & Albert-László Barabási, 2017. "Network control principles predict neuron function in the Caenorhabditis elegans connectome," Nature, Nature, vol. 550(7677), pages 519-523, October.
    4. Marcus Kaiser & Claus C Hilgetag, 2006. "Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems," PLOS Computational Biology, Public Library of Science, vol. 2(7), pages 1-11, July.
    5. Samuel P Muscinelli & Wulfram Gerstner & Tilo Schwalger, 2019. "How single neuron properties shape chaotic dynamics and signal transmission in random neural networks," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-35, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Dongli, Duan & Chengxing, Wu & Yuchen, Zhai & Changchun, Lv & Ning, Wang, 2022. "Coexistence mechanism of alien species and local ecosystem based on network dimensionality reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    4. Tu, Chengyi & Fan, Ying & Shi, Tianyu, 2024. "Dimensionality reduction of networked systems with separable coupling-dynamics: Theory and applications," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Duan, Wenqi & Madasi, Joseph David & Khurshid, Adnan & Ma, Dan, 2022. "Industrial structure conditions economic resilience," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    6. Sebestyén, Tamás & Szabó, Norbert & Braun, Emese & Bedő, Zsolt, 2024. "Lokális reziliencia számítása térbeli általános egyensúlyi modell felhasználásával [Measuring local resilience with a spatial computable general equilibrium model]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1222-1253.
    7. Hou, Gege & Bai, Lei & Si, Shubin, 2023. "Ecosystem resilience and stability analysis against alien species invasion patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    8. Liu, Siyuan & Zhang, Chunyan & Li, Kun & Zhang, Jianlei, 2022. "Exploring the inducement for social dilemma and cooperation promotion mechanisms in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    9. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    10. Xu, Peng-Cheng & Lu, Qing-Chang & Xie, Chi & Cheong, Taesu, 2024. "Modeling the resilience of interdependent networks: The role of function dependency in metro and bus systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    11. Lu, Qing-Long & Sun, Wenzhe & Dai, Jiannan & Schmöcker, Jan-Dirk & Antoniou, Constantinos, 2024. "Traffic resilience quantification based on macroscopic fundamental diagrams and analysis using topological attributes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    12. Meng, Xiangyi & Zhou, Bin, 2023. "Scale-free networks beyond power-law degree distribution," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    13. Chunheng Jiang & Zhenhan Huang & Tejaswini Pedapati & Pin-Yu Chen & Yizhou Sun & Jianxi Gao, 2024. "Network properties determine neural network performance," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Alejandro Martínez-Calvo & Matthew D. Biviano & Anneline H. Christensen & Eleni Katifori & Kaare H. Jensen & Miguel Ruiz-García, 2024. "The fluidic memristor as a collective phenomenon in elastohydrodynamic networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Che, Yiming & Zhang, Ziang (John) & Cheng, Changqing, 2023. "Physical–statistical learning in resilience assessment for power generation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    16. Aura Reggiani, 2022. "The Architecture of Connectivity: A Key to Network Vulnerability, Complexity and Resilience," Networks and Spatial Economics, Springer, vol. 22(3), pages 415-437, September.
    17. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Schipfer, F. & Mäki, E. & Schmieder, U. & Lange, N. & Schildhauer, T. & Hennig, C. & Thrän, D., 2022. "Status of and expectations for flexible bioenergy to support resource efficiency and to accelerate the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Radillo-Ochoa, Diego & Rodríguez-Hernández, Andrea & Terrero-Escalante, César A., 2023. "Bifurcation in cellular evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:599:y:2022:i:c:s0378437122003119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.