IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0213010.html
   My bibliography  Save this article

Working memory improves developmentally as neural processes stabilize

Author

Listed:
  • David Florentino Montez
  • Finnegan J Calabro
  • Beatriz Luna

Abstract

Working memory performance is a key indicator of cognitive and developmental status. While recent evidence indicates that stabilizing neural gain supports the stabilization of working memory during adolescence, the computational mechanisms linking neural stabilization to behavior are poorly understood. We develop a mechanistic account of behavior during the memory-guided saccade task based on a stochastic accumulator framework. Results indicate that a specific balance of independent gain signals affecting working memory representations and oculomotor response thresholds can account for a peculiar U-shaped feature of the speed-accuracy relationship. Additionally, aspects of behavioral variability and mean behavioral performance, as well as subtle shifts in the shape of the speed-accuracy relationship across development, can be accounted for by the stabilization of these two sources of variability. Thus, the stabilization of neural variability can, in part, account for developmental improvements in behavioral variability as well as some improvement in mean behavioral performance.

Suggested Citation

  • David Florentino Montez & Finnegan J Calabro & Beatriz Luna, 2019. "Working memory improves developmentally as neural processes stabilize," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-15, March.
  • Handle: RePEc:plo:pone00:0213010
    DOI: 10.1371/journal.pone.0213010
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213010
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0213010&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0213010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anthony Randal McIntosh & Natasa Kovacevic & Roxane J Itier, 2008. "Increased Brain Signal Variability Accompanies Lower Behavioral Variability in Development," PLOS Computational Biology, Public Library of Science, vol. 4(7), pages 1-9, July.
    2. Behrad Noudoost & Tirin Moore, 2011. "Control of visual cortical signals by prefrontal dopamine," Nature, Nature, vol. 474(7351), pages 372-375, June.
    3. Xin Zhou & Dantong Zhu & Xue-Lian Qi & Sihai Li & Samson G. King & Emilio Salinas & Terrence R. Stanford & Christos Constantinidis, 2016. "Neural correlates of working memory development in adolescent primates," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    4. Susan M. Courtney & Leslie G. Ungerleider & Katrina Keil & James V. Haxby, 1997. "Transient and sustained activity in a distributed neural system for human working memory," Nature, Nature, vol. 386(6625), pages 608-611, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jessie M H Szostakiwskyj & Stephanie E Willatt & Filomeno Cortese & Andrea B Protzner, 2017. "The modulation of EEG variability between internally- and externally-driven cognitive states varies with maturation and task performance," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-27, July.
    2. Mazen El-Baba & Daniel J Lewis & Zhuo Fang & Adrian M Owen & Stuart M Fogel & J Bruce Morton, 2019. "Functional connectivity dynamics slow with descent from wakefulness to sleep," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-13, December.
    3. Thore Apitz & Nico Bunzeck, 2014. "Early Effects of Reward Anticipation Are Modulated by Dopaminergic Stimulation," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-11, October.
    4. Peter R Murphy & Joachim Vandekerckhove & Sander Nieuwenhuis, 2014. "Pupil-Linked Arousal Determines Variability in Perceptual Decision Making," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-13, September.
    5. Biyu J He & John M Zempel, 2013. "Average Is Optimal: An Inverted-U Relationship between Trial-to-Trial Brain Activity and Behavioral Performance," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.
    6. Yoshiki Kaneoke & Tomohiro Donishi & Jun Iwatani & Satoshi Ukai & Kazuhiro Shinosaki & Masaki Terada, 2012. "Variance and Autocorrelation of the Spontaneous Slow Brain Activity," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-10, May.
    7. Alexandre Zénon & Brian D Corneil & Andrea Alamia & Nabil Filali-Sadouk & Etienne Olivier, 2014. "Counterproductive Effect of Saccadic Suppression during Attention Shifts," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-12, January.
    8. Macauley Smith Breault & Pierre Sacré & Zachary B. Fitzgerald & John T. Gale & Kathleen E. Cullen & Jorge A. González-Martínez & Sridevi V. Sarma, 2023. "Internal states as a source of subject-dependent movement variability are represented by large-scale brain networks," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Martínez, J.H. & Ariza, P. & Zanin, M. & Papo, D. & Maestú, F. & Pastor, J.M. & Bajo, R. & Boccaletti, S. & Buldú, J.M., 2015. "Anomalous consistency in Mild Cognitive Impairment: A complex networks approach," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 144-155.
    10. Torben Ott & Anna Marlina Stein & Andreas Nieder, 2023. "Dopamine receptor activation regulates reward expectancy signals during cognitive control in primate prefrontal neurons," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Yvonne Li & Nabil Daddaoua & Mattias Horan & Nicholas C. Foley & Jacqueline Gottlieb, 2022. "Uncertainty modulates visual maps during noninstrumental information demand," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Franco Delogu & Wouter M Bergmann Tiest & Tanja C W Nijboer & Astrid M L Kappers & Albert Postma, 2013. "Binding in Haptics: Integration of “What” and “Where” Information in Working Memory for Active Touch," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    13. Amir Akbarian & Kelsey Clark & Behrad Noudoost & Neda Nategh, 2021. "A sensory memory to preserve visual representations across eye movements," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0213010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.