IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0030161.html
   My bibliography  Save this article

Elucidating the Altered Transcriptional Programs in Breast Cancer using Independent Component Analysis

Author

Listed:
  • Andrew E Teschendorff
  • Michel Journée
  • Pierre A Absil
  • Rodolphe Sepulchre
  • Carlos Caldas

Abstract

The quantity of mRNA transcripts in a cell is determined by a complex interplay of cooperative and counteracting biological processes. Independent Component Analysis (ICA) is one of a few number of unsupervised algorithms that have been applied to microarray gene expression data in an attempt to understand phenotype differences in terms of changes in the activation/inhibition patterns of biological pathways. While the ICA model has been shown to outperform other linear representations of the data such as Principal Components Analysis (PCA), a validation using explicit pathway and regulatory element information has not yet been performed. We apply a range of popular ICA algorithms to six of the largest microarray cancer datasets and use pathway-knowledge and regulatory-element databases for validation. We show that ICA outperforms PCA and clustering-based methods in that ICA components map closer to known cancer-related pathways, regulatory modules, and cancer phenotypes. Furthermore, we identify cancer signalling and oncogenic pathways and regulatory modules that play a prominent role in breast cancer and relate the differential activation patterns of these to breast cancer phenotypes. Importantly, we find novel associations linking immune response and epithelial–mesenchymal transition pathways with estrogen receptor status and histological grade, respectively. In addition, we find associations linking the activity levels of biological pathways and transcription factors (NF1 and NFAT) with clinical outcome in breast cancer. ICA provides a framework for a more biologically relevant interpretation of genomewide transcriptomic data. Adopting ICA as the analysis tool of choice will help understand the phenotype–pathway relationship and thus help elucidate the molecular taxonomy of heterogeneous cancers and of other complex genetic diseases.: The amount of a given transcript or protein in a cell is determined by a balance of expression and repression in a complex network of biological processes. This delicate balance is compromised in complex genetic diseases such as cancer by alterations in the activation patterns of functionally important biological processes known as pathways. Over the last years, a large number of microarray experiments profiling the expression levels of more than 20,000 human genes in hundreds of tumor samples have shown that most cancer types are heterogeneous diseases, each characterized by many different expression subtypes. The biological and clinical goal is to explain the observed tumor and clinical heterogeneity in terms of specific patterns of altered pathways. The bioinformatic challenge is therefore to devise mathematical tools that explicitly attempt to infer these altered pathways. To this end, we applied a signal processing tool in a meta-analysis of breast cancer, encompassing more than 800 tumor specimens derived from four different patient cohorts, and showed that this algorithm significantly outperforms popular standard bioinformatics tools in identifying altered pathways underlying breast cancer. These results show that the same tool could be applied to other complex human genetic diseases to better elucidate the underlying altered pathways.

Suggested Citation

  • Andrew E Teschendorff & Michel Journée & Pierre A Absil & Rodolphe Sepulchre & Carlos Caldas, 2007. "Elucidating the Altered Transcriptional Programs in Breast Cancer using Independent Component Analysis," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-16, August.
  • Handle: RePEc:plo:pcbi00:0030161
    DOI: 10.1371/journal.pcbi.0030161
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030161
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0030161&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0030161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles M. Perou & Therese Sørlie & Michael B. Eisen & Matt van de Rijn & Stefanie S. Jeffrey & Christian A. Rees & Jonathan R. Pollack & Douglas T. Ross & Hilde Johnsen & Lars A. Akslen & Øystein Flu, 2000. "Molecular portraits of human breast tumours," Nature, Nature, vol. 406(6797), pages 747-752, August.
    2. Andrea H. Bild & Guang Yao & Jeffrey T. Chang & Quanli Wang & Anil Potti & Dawn Chasse & Mary-Beth Joshi & David Harpole & Johnathan M. Lancaster & Andrew Berchuck & John A. Olson & Jeffrey R. Marks &, 2006. "Oncogenic pathway signatures in human cancers as a guide to targeted therapies," Nature, Nature, vol. 439(7074), pages 353-357, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xi & Hoadley, Katherine A. & Hannig, Jan & Marron, J.S., 2023. "Jackstraw inference for AJIVE data integration," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    2. Manish G & Anil Kumar Badana & Rama Rao Malla, 2017. "Emerging Diagnostic and Prognostic Biomarkers of Triple Negative Breast Cancer," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(3), pages 561-565, August.
    3. Jacob Elnaggar & Fern Tsien & Lucio Miele & Chindo Hicks & Clayton Yates & Melisa Davis, 2019. "An Integrative Genomics Approach for Associating Genetic Susceptibility with the Tumor Immune Microenvironment in Triple Negative Breast Cancer," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 15(1), pages 1-12, February.
    4. Egashira, Kento & Yata, Kazuyoshi & Aoshima, Makoto, 2024. "Asymptotic properties of hierarchical clustering in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    5. Junjie Su & Byung-Jun Yoon & Edward R Dougherty, 2009. "Accurate and Reliable Cancer Classification Based on Probabilistic Inference of Pathway Activity," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-10, December.
    6. Carey K Anders & Chaitanya R Acharya & David S Hsu & Gloria Broadwater & Katherine Garman & John A Foekens & Yi Zhang & Yixin Wang & Kelly Marcom & Jeffrey R Marks & Sayan Mukherjee & Joseph R Nevins , 2008. "Age-Specific Differences in Oncogenic Pathway Deregulation Seen in Human Breast Tumors," PLOS ONE, Public Library of Science, vol. 3(1), pages 1-8, January.
    7. María Elena Martínez & Jonathan T Unkart & Li Tao & Candyce H Kroenke & Richard Schwab & Ian Komenaka & Scarlett Lin Gomez, 2017. "Prognostic significance of marital status in breast cancer survival: A population-based study," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
    8. Yishai Shimoni, 2018. "Association between expression of random gene sets and survival is evident in multiple cancer types and may be explained by sub-classification," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-15, February.
    9. Marcin Pilarczyk & Mehdi Fazel-Najafabadi & Michal Kouril & Behrouz Shamsaei & Juozas Vasiliauskas & Wen Niu & Naim Mahi & Lixia Zhang & Nicholas A. Clark & Yan Ren & Shana White & Rashid Karim & Huan, 2022. "Connecting omics signatures and revealing biological mechanisms with iLINCS," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Verena Jabs & Karolina Edlund & Helena König & Marianna Grinberg & Katrin Madjar & Jörg Rahnenführer & Simon Ekman & Michael Bergkvist & Lars Holmberg & Katja Ickstadt & Johan Botling & Jan G Hengstle, 2017. "Integrative analysis of genome-wide gene copy number changes and gene expression in non-small cell lung cancer," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-23, November.
    11. Junhee Seok & Ronald W Davis & Wenzhong Xiao, 2015. "A Hybrid Approach of Gene Sets and Single Genes for the Prediction of Survival Risks with Gene Expression Data," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
    12. Qing Qu & Yan Mao & Xiao-chun Fei & Kun-wei Shen, 2013. "The Impact of Androgen Receptor Expression on Breast Cancer Survival: A Retrospective Study and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    13. Eun Sung Park & Ju-Seog Lee & Hyun Goo Woo & Fenghuang Zhan & Joanna H Shih & John D Shaughnessy Jr. & J Frederic Mushinski, 2007. "Heterologous Tissue Culture Expression Signature Predicts Human Breast Cancer Prognosis," PLOS ONE, Public Library of Science, vol. 2(1), pages 1-16, January.
    14. Bourret, Pascale & Keating, Peter & Cambrosio, Alberto, 2011. "Regulating diagnosis in post-genomic medicine: Re-aligning clinical judgment?," Social Science & Medicine, Elsevier, vol. 73(6), pages 816-824, September.
    15. G. Gambardella & G. Viscido & B. Tumaini & A. Isacchi & R. Bosotti & D. di Bernardo, 2022. "A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Yoo-Ah Kim & Stefan Wuchty & Teresa M Przytycka, 2011. "Identifying Causal Genes and Dysregulated Pathways in Complex Diseases," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
    17. Pauliina M. Munne & Lahja Martikainen & Iiris Räty & Kia Bertula & Nonappa & Janika Ruuska & Hanna Ala-Hongisto & Aino Peura & Babette Hollmann & Lilya Euro & Kerim Yavuz & Linda Patrikainen & Maria S, 2021. "Compressive stress-mediated p38 activation required for ERα + phenotype in breast cancer," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    18. Radhakrishnan Nagarajan & Marco Scutari, 2013. "Impact of Noise on Molecular Network Inference," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    19. R Joseph Bender & Feilim Mac Gabhann, 2013. "Expression of VEGF and Semaphorin Genes Define Subgroups of Triple Negative Breast Cancer," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-15, May.
    20. Marron, J.S., 2017. "Big Data in context and robustness against heterogeneity," Econometrics and Statistics, Elsevier, vol. 2(C), pages 73-80.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0030161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.