IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0030155.html
   My bibliography  Save this article

Image-Based Modeling Reveals Dynamic Redistribution of DNA Damage into Nuclear Sub-Domains

Author

Listed:
  • Sylvain V Costes
  • Artem Ponomarev
  • James L Chen
  • David Nguyen
  • Francis A Cucinotta
  • Mary Helen Barcellos-Hoff

Abstract

Several proteins involved in the response to DNA double strand breaks (DSB) form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF) are believed to be located where DNA damage occurs. To test this assumption, we analyzed the spatial distribution of 53BP1, phosphorylated ATM, and γH2AX RIF in cells irradiated with high linear energy transfer (LET) radiation and low LET. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. As expected, simulations produced DNA-weighted random (Poisson) distributions. In contrast, the distributions of RIF obtained as early as 5 min after exposure to high LET (1 GeV/amu Fe) were non-random. This deviation from the expected DNA-weighted random pattern can be further characterized by “relative DNA image measurements.” This novel imaging approach shows that RIF were located preferentially at the interface between high and low DNA density regions, and were more frequent than predicted in regions with lower DNA density. The same preferential nuclear location was also measured for RIF induced by 1 Gy of low-LET radiation. This deviation from random behavior was evident only 5 min after irradiation for phosphorylated ATM RIF, while γH2AX and 53BP1 RIF showed pronounced deviations up to 30 min after exposure. These data suggest that DNA damage–induced foci are restricted to certain regions of the nucleus of human epithelial cells. It is possible that DNA lesions are collected in these nuclear sub-domains for more efficient repair.: DNA damages are daily cellular events. If such events are left unchecked in an organism, they can lead to DNA mutations and possibly cancer over a long period of time. Consequently, cells have very efficient DNA repair machinery. Many studies have focused on the different molecular factors involved in the repair machinery, neglecting to consider the spatial context where damage occurs. Therefore, little is known about the role the nuclear architecture might have in the DNA damage response. In this study, we introduce computer modeling and image analysis tools in order to relate the position of DNA damage markers to morphologically distinct regions of the nucleus. Using these tools, we show that radiation-induced damages locate preferentially in non-condensed DNA regions or at the boundary of regions with condensed DNA. These results contradict the current dogma that the molecular response to randomly generated DNA damages is independent of their nuclear locations. Instead, this suggests the existence of repair centers in the nucleus. Overall, our approach shows that nuclear architecture plays a role in the DNA damage response, reminding us that the nucleus is not simply a soup of DNA and proteins.

Suggested Citation

  • Sylvain V Costes & Artem Ponomarev & James L Chen & David Nguyen & Francis A Cucinotta & Mary Helen Barcellos-Hoff, 2007. "Image-Based Modeling Reveals Dynamic Redistribution of DNA Damage into Nuclear Sub-Domains," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-12, August.
  • Handle: RePEc:plo:pcbi00:0030155
    DOI: 10.1371/journal.pcbi.0030155
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030155
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0030155&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0030155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher J. Bakkenist & Michael B. Kastan, 2003. "DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation," Nature, Nature, vol. 421(6922), pages 499-506, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walter Georgescu & Alma Osseiran & Maria Rojec & Yueyong Liu & Maxime Bombrun & Jonathan Tang & Sylvain V Costes, 2015. "Characterizing the DNA Damage Response by Cell Tracking Algorithms and Cell Features Classification Using High-Content Time-Lapse Analysis," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rut Molinuevo & Julien Menendez & Kora Cadle & Nabeela Ariqat & Marie Klaire Choy & Cayla Lagousis & Gwen Thomas & Catherine Strietzel & J. W. Bubolz & Lindsay Hinck, 2024. "Physiological DNA damage promotes functional endoreplication of mammary gland alveolar cells during lactation," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    3. Haichao Zhao & Jia Li & Zhongsheng You & Howard D. Lindsay & Shan Yan, 2024. "Distinct regulation of ATM signaling by DNA single-strand breaks and APE1," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Zhang, L.W. & Cheng, Y.M. & Liew, K.M., 2014. "Mathematical modeling of p53 pulses in G2 phase with DNA damage," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1000-1010.
    5. Huimin Zhang & Yun Xiong & Dan Su & Chao Wang & Mrinal Srivastava & Mengfan Tang & Xu Feng & Min Huang & Zhen Chen & Junjie Chen, 2022. "TDP1-independent pathways in the process and repair of TOP1-induced DNA damage," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Salvatore Terrazzino & Sarah Cargnin & Letizia Deantonio & Carla Pisani & Laura Masini & Pier Luigi Canonico & Armando A Genazzani & Marco Krengli, 2019. "Impact of ATM rs1801516 on late skin reactions of radiotherapy for breast cancer: Evidences from a cohort study and a trial sequential meta-analysis," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-21, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0030155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.