IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0225685.html
   My bibliography  Save this article

Impact of ATM rs1801516 on late skin reactions of radiotherapy for breast cancer: Evidences from a cohort study and a trial sequential meta-analysis

Author

Listed:
  • Salvatore Terrazzino
  • Sarah Cargnin
  • Letizia Deantonio
  • Carla Pisani
  • Laura Masini
  • Pier Luigi Canonico
  • Armando A Genazzani
  • Marco Krengli

Abstract

The relationship between the ataxia-telangiectasia mutated (ATM) rs1801516 gene polymorphism and risk of radiation-induced late skin side effects remains a highly debated issue. In the present study, we assessed the role of ATM rs1801516 as risk factor for radiation-induced fibrosis and telangiectasia, using the LENT-SOMA scoring scale in 285 breast cancer patients who received radiotherapy after breast conserving surgery. A systematic review with meta-analysis and trial sequential analysis (TSA) was then conducted to assess reliability of the accumulated evidence in breast cancer patients. In our cohort study, no association was found between ATM rs1801516 and grade ≥ 2 telangiectasia (GA+AA vs GG, HRadjusted: 0.699; 95%CI: 0.273–1.792, P = 0.459) or grade ≥ 2 fibrosis (GA+AA vs GG, HRadjusted: 1.175; 95%CI: 0.641–2.154, P = 0.604). Twelve independent cohorts of breast cancer patients were identified through the systematic review, of which 11 and 9 cohorts focused respectively on the association with radiation-induced fibrosis and radiation-induced telangiectasia. Pooled analyses of 10 (n = 2928 patients) and 12 (n = 2783) cohorts revealed, respectively, no association of ATM rs1801516 with radiation-induced telangiectasia (OR: 1.14; 95%CI: 0.88–1.48, P = 0.316) and a significant correlation with radiation-induced fibrosis (OR: 1.23; 95%CI: 1.00–1.51, P = 0.049), which however did not remain significant after TSA adjustment (TSA-adjusted 95%CI: 0.85–1.78). These results do not support an impact of ATM rs1801516 on late skin reactions of radiotherapy for breast cancer, nevertheless further large studies are still required for conclusive evidences.

Suggested Citation

  • Salvatore Terrazzino & Sarah Cargnin & Letizia Deantonio & Carla Pisani & Laura Masini & Pier Luigi Canonico & Armando A Genazzani & Marco Krengli, 2019. "Impact of ATM rs1801516 on late skin reactions of radiotherapy for breast cancer: Evidences from a cohort study and a trial sequential meta-analysis," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-21, November.
  • Handle: RePEc:plo:pone00:0225685
    DOI: 10.1371/journal.pone.0225685
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225685
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0225685&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0225685?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher J. Bakkenist & Michael B. Kastan, 2003. "DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation," Nature, Nature, vol. 421(6922), pages 499-506, January.
    2. Mei-Ling Zhu & MengYun Wang & Ting-Yan Shi & Qiao-Xin Li & Pan Xi & Kai-Qin Xia & Leizhen Zheng & Qing-Yi Wei, 2013. "No Association between TGFB1 Polymorphisms and Late Radiotherapy Toxicity: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rut Molinuevo & Julien Menendez & Kora Cadle & Nabeela Ariqat & Marie Klaire Choy & Cayla Lagousis & Gwen Thomas & Catherine Strietzel & J. W. Bubolz & Lindsay Hinck, 2024. "Physiological DNA damage promotes functional endoreplication of mammary gland alveolar cells during lactation," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    3. Haichao Zhao & Jia Li & Zhongsheng You & Howard D. Lindsay & Shan Yan, 2024. "Distinct regulation of ATM signaling by DNA single-strand breaks and APE1," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Zhang, L.W. & Cheng, Y.M. & Liew, K.M., 2014. "Mathematical modeling of p53 pulses in G2 phase with DNA damage," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1000-1010.
    5. Huimin Zhang & Yun Xiong & Dan Su & Chao Wang & Mrinal Srivastava & Mengfan Tang & Xu Feng & Min Huang & Zhen Chen & Junjie Chen, 2022. "TDP1-independent pathways in the process and repair of TOP1-induced DNA damage," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Sylvain V Costes & Artem Ponomarev & James L Chen & David Nguyen & Francis A Cucinotta & Mary Helen Barcellos-Hoff, 2007. "Image-Based Modeling Reveals Dynamic Redistribution of DNA Damage into Nuclear Sub-Domains," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-12, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0225685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.