IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0129438.html
   My bibliography  Save this article

Characterizing the DNA Damage Response by Cell Tracking Algorithms and Cell Features Classification Using High-Content Time-Lapse Analysis

Author

Listed:
  • Walter Georgescu
  • Alma Osseiran
  • Maria Rojec
  • Yueyong Liu
  • Maxime Bombrun
  • Jonathan Tang
  • Sylvain V Costes

Abstract

Traditionally, the kinetics of DNA repair have been estimated using immunocytochemistry by labeling proteins involved in the DNA damage response (DDR) with fluorescent markers in a fixed cell assay. However, detailed knowledge of DDR dynamics across multiple cell generations cannot be obtained using a limited number of fixed cell time-points. Here we report on the dynamics of 53BP1 radiation induced foci (RIF) across multiple cell generations using live cell imaging of non-malignant human mammary epithelial cells (MCF10A) expressing histone H2B-GFP and the DNA repair protein 53BP1-mCherry. Using automatic extraction of RIF imaging features and linear programming techniques, we were able to characterize detailed RIF kinetics for 24 hours before and 24 hours after exposure to low and high doses of ionizing radiation. High-content-analysis at the single cell level over hundreds of cells allows us to quantify precisely the dose dependence of 53BP1 protein production, RIF nuclear localization and RIF movement after exposure to X-ray. Using elastic registration techniques based on the nuclear pattern of individual cells, we could describe the motion of individual RIF precisely within the nucleus. We show that DNA repair occurs in a limited number of large domains, within which multiple small RIFs form, merge and/or resolve with random motion following normal diffusion law. Large foci formation is shown to be mainly happening through the merging of smaller RIF rather than through growth of an individual focus. We estimate repair domain sizes of 7.5 to 11 µm2 with a maximum number of ~15 domains per MCF10A cell. This work also highlights DDR which are specific to doses larger than 1 Gy such as rapid 53BP1 protein increase in the nucleus and foci diffusion rates that are significantly faster than for spontaneous foci movement. We hypothesize that RIF merging reflects a "stressed" DNA repair process that has been taken outside physiological conditions when too many DSB occur at once. High doses of ionizing radiation lead to RIF merging into repair domains which in turn increases DSB proximity and misrepair. Such finding may therefore be critical to explain the supralinear dose dependence for chromosomal rearrangement and cell death measured after exposure to ionizing radiation.

Suggested Citation

  • Walter Georgescu & Alma Osseiran & Maria Rojec & Yueyong Liu & Maxime Bombrun & Jonathan Tang & Sylvain V Costes, 2015. "Characterizing the DNA Damage Response by Cell Tracking Algorithms and Cell Features Classification Using High-Content Time-Lapse Analysis," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
  • Handle: RePEc:plo:pone00:0129438
    DOI: 10.1371/journal.pone.0129438
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0129438
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0129438&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0129438?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sylvain V Costes & Artem Ponomarev & James L Chen & David Nguyen & Francis A Cucinotta & Mary Helen Barcellos-Hoff, 2007. "Image-Based Modeling Reveals Dynamic Redistribution of DNA Damage into Nuclear Sub-Domains," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0129438. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.