IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004650.html
   My bibliography  Save this article

Protein Connectivity in Chemotaxis Receptor Complexes

Author

Listed:
  • Stephan Eismann
  • Robert G Endres

Abstract

The chemotaxis sensory system allows bacteria such as Escherichia coli to swim towards nutrients and away from repellents. The underlying pathway is remarkably sensitive in detecting chemical gradients over a wide range of ambient concentrations. Interactions among receptors, which are predominantly clustered at the cell poles, are crucial to this sensitivity. Although it has been suggested that the kinase CheA and the adapter protein CheW are integral for receptor connectivity, the exact coupling mechanism remains unclear. Here, we present a statistical-mechanics approach to model the receptor linkage mechanism itself, building on nanodisc and electron cryotomography experiments. Specifically, we investigate how the sensing behavior of mixed receptor clusters is affected by variations in the expression levels of CheA and CheW at a constant receptor density in the membrane. Our model compares favorably with dose-response curves from in vivo Förster resonance energy transfer (FRET) measurements, demonstrating that the receptor-methylation level has only minor effects on receptor cooperativity. Importantly, our model provides an explanation for the non-intuitive conclusion that the receptor cooperativity decreases with increasing levels of CheA, a core signaling protein associated with the receptors, whereas the receptor cooperativity increases with increasing levels of CheW, a key adapter protein. Finally, we propose an evolutionary advantage as explanation for the recently suggested CheW-only linker structures.Author Summary: Receptor clusters of the bacterial chemotaxis sensory system act as antennae to amplify tiny changes in concentrations in the chemical environment of the cell, ultimately steering the cell towards nutrients and away from toxins. Despite bacterial chemotaxis being the most widely studied sensory pathway, the exact architecture of the receptor clusters remains speculative, with understanding suffering from a number of paradoxical observations. To address these issues with respect to the protein arrangement in the linkers connecting receptors, we present a statistical-mechanics model that combines insights from electron cryotomography on the linker architecture with results from fluorescence imaging of signaling in living cells. Although the signaling data for different expression levels of key molecular components in the linkers seems contradictory at first, our model reconciles these predictions with structural and biochemical data. Finally, we provide an evolutionary explanation for the observation that some of the incorporated linkers do not seem to transmit signals from the receptors.

Suggested Citation

  • Stephan Eismann & Robert G Endres, 2015. "Protein Connectivity in Chemotaxis Receptor Complexes," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-21, December.
  • Handle: RePEc:plo:pcbi00:1004650
    DOI: 10.1371/journal.pcbi.1004650
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004650
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004650&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004650?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dennis Bray & Matthew D. Levin & Carl J. Morton-Firth, 1998. "Receptor clustering as a cellular mechanism to control sensitivity," Nature, Nature, vol. 393(6680), pages 85-88, May.
    2. Victor Sourjik & Howard C. Berg, 2004. "Functional interactions between receptors in bacterial chemotaxis," Nature, Nature, vol. 428(6981), pages 437-441, March.
    3. Robert G Endres & Joseph J Falke & Ned S Wingreen, 2007. "Chemotaxis Receptor Complexes: From Signaling to Assembly," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diana Clausznitzer & Olga Oleksiuk & Linda Løvdok & Victor Sourjik & Robert G Endres, 2010. "Chemotactic Response and Adaptation Dynamics in Escherichia coli," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-11, May.
    2. Robert G Endres & Joseph J Falke & Ned S Wingreen, 2007. "Chemotaxis Receptor Complexes: From Signaling to Assembly," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-9, July.
    3. Christopher T Lee & Justin G Laughlin & Nils Angliviel de La Beaumelle & Rommie E Amaro & J Andrew McCammon & Ravi Ramamoorthi & Michael Holst & Padmini Rangamani, 2020. "3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-35, April.
    4. Tristan Ursell & Kerwyn Casey Huang & Eric Peterson & Rob Phillips, 2007. "Cooperative Gating and Spatial Organization of Membrane Proteins through Elastic Interactions," PLOS Computational Biology, Public Library of Science, vol. 3(5), pages 1-10, May.
    5. Kenneth L Ho & Heather A Harrington, 2010. "Bistability in Apoptosis by Receptor Clustering," PLOS Computational Biology, Public Library of Science, vol. 6(10), pages 1-9, October.
    6. Derek J Cashman & Davi R Ortega & Igor B Zhulin & Jerome Baudry, 2013. "Homology Modeling of the CheW Coupling Protein of the Chemotaxis Signaling Complex," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.
    7. Junjiajia Long & Steven W Zucker & Thierry Emonet, 2017. "Feedback between motion and sensation provides nonlinear boost in run-and-tumble navigation," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-25, March.
    8. Burton W Andrews & Tau-Mu Yi & Pablo A Iglesias, 2006. "Optimal Noise Filtering in the Chemotactic Response of Escherichia coli," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-12, November.
    9. Diana Clausznitzer & Gabriele Micali & Silke Neumann & Victor Sourjik & Robert G Endres, 2014. "Predicting Chemical Environments of Bacteria from Receptor Signaling," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.