IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0010064.html
   My bibliography  Save this article

Quantitative Analysis of Genetic and Neuronal Multi-Perturbation Experiments

Author

Listed:
  • Alon Kaufman
  • Alon Keinan
  • Isaac Meilijson
  • Martin Kupiec
  • Eytan Ruppin

Abstract

Perturbation studies, in which functional performance is measured after deletion, mutation, or lesion of elements of a biological system, have been traditionally employed in many fields in biology. The vast majority of these studies have been qualitative and have employed single perturbations, often resulting in little phenotypic effect. Recently, newly emerging experimental techniques have allowed researchers to carry out concomitant multi-perturbations and to uncover the causal functional contributions of system elements. This study presents a rigorous and quantitative multi-perturbation analysis of gene knockout and neuronal ablation experiments. In both cases, a quantification of the elements' contributions, and new insights and predictions, are provided. Multi-perturbation analysis has a potentially wide range of applications and is gradually becoming an essential tool in biology.Synopsis: Which are the important elements of a system? What are their relative contributions to the performance of the various tasks the system is involved in? These simple and basic questions typically arise when analyzing the workings of any system, and of biological systems in particular. In the latter, the elements may be genes, proteins, cells, or tissues, depending on the level and scope of the analysis. To address these questions in a causal manner, perturbations are required, where the elements are perturbed and the resulting performance function is recorded. This approach has been one of the cornerstones of biological research. However, it has usually been confined to the perturbation of a single element at a time, which may lead to misleading results if the elements of the system functionally interact with each other. This paper addresses these questions by providing a quantitative and rigorous method for the analysis of multi-perturbation experiments, where more than one element may be concomitantly perturbed. The workings of the new method are demonstrated in the analysis of genetic multi-knockout experiments of DNA repair in the yeast Saccharomyces cerevisiae and a neural circuit in the nematode Caenorhabditis elegans accounting for chemotaxis. However, the method is general and can be applied to study many other systems in numerous pertinent biological domains.

Suggested Citation

  • Alon Kaufman & Alon Keinan & Isaac Meilijson & Martin Kupiec & Eytan Ruppin, 2005. "Quantitative Analysis of Genetic and Neuronal Multi-Perturbation Experiments," PLOS Computational Biology, Public Library of Science, vol. 1(6), pages 1-7, November.
  • Handle: RePEc:plo:pcbi00:0010064
    DOI: 10.1371/journal.pcbi.0010064
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0010064
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0010064&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0010064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhenglong Gu & Lars M. Steinmetz & Xun Gu & Curt Scharfe & Ronald W. Davis & Wen-Hsiung Li, 2003. "Role of duplicate genes in genetic robustness against null mutations," Nature, Nature, vol. 421(6918), pages 63-66, January.
    2. Marc Roubens & Michel Grabisch, 1999. "An axiomatic approach to the concept of interaction among players in cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(4), pages 547-565.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alon Kaufman & Gideon Dror & Isaac Meilijson & Eytan Ruppin, 2006. "Gene Expression of Caenorhabditis elegans Neurons Carries Information on Their Synaptic Connectivity," PLOS Computational Biology, Public Library of Science, vol. 2(12), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grabisch, Michel & Rusinowska, Agnieszka, 2011. "Influence functions, followers and command games," Games and Economic Behavior, Elsevier, vol. 72(1), pages 123-138, May.
    2. Ulrich Faigle & Michel Grabisch, 2017. "Game Theoretic Interaction and Decision: A Quantum Analysis," Games, MDPI, vol. 8(4), pages 1-25, November.
    3. Mustapha Ridaoui & Michel Grabisch & Christophe Labreuche, 2018. "An axiomatisation of the Banzhaf value and interaction index for multichoice games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02381119, HAL.
    4. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2018. "On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application," European Journal of Operational Research, Elsevier, vol. 271(1), pages 120-140.
    5. Ulrich Faigle & Michel Grabisch, 2016. "Bases and linear transforms of TU-games and cooperation systems," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 875-892, November.
    6. Michel Grabisch & Fabien Lange, 2007. "Games on lattices, multichoice games and the shapley value: a new approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 153-167, February.
    7. Grabisch, Michel & Labreuche, Christophe & Vansnick, Jean-Claude, 2003. "On the extension of pseudo-Boolean functions for the aggregation of interacting criteria," European Journal of Operational Research, Elsevier, vol. 148(1), pages 28-47, July.
    8. Mustapha Ridaoui & Michel Grabisch & Christophe Labreuche, 2019. "Interaction indices for multichoice games," Documents de travail du Centre d'Economie de la Sorbonne 19019, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    9. Billot, Antoine & Thisse, Jacques-Francois, 2005. "How to share when context matters: The Mobius value as a generalized solution for cooperative games," Journal of Mathematical Economics, Elsevier, vol. 41(8), pages 1007-1029, December.
    10. Malaguti, Giulia & Singh, Param Priya & Isambert, Hervé, 2014. "On the retention of gene duplicates prone to dominant deleterious mutations," Theoretical Population Biology, Elsevier, vol. 93(C), pages 38-51.
    11. Michel Grabisch & Christophe Labreuche, 2016. "Fuzzy Measures and Integrals in MCDA," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 553-603, Springer.
    12. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    13. Fadi J. Najm & Peter DeWeirdt & Molly M. Moore & Samantha M. Bevill & Chadi A. El Farran & Kevin A. Macias & Mudra Hegde & Amanda L. Waterbury & Brian B. Liau & Peter Galen & John G. Doench & Bradley , 2023. "Chromatin complex dependencies reveal targeting opportunities in leukemia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Alessio Bonetti & Silvia Bortot & Mario Fedrizzi & Silvio Giove & Ricardo Alberto Marques Pereira & Andrea Molinari, 2011. "Modelling group processes and effort estimation in Project Management using the Choquet integral: an MCDM approach," DISA Working Papers 2011/12, Department of Computer and Management Sciences, University of Trento, Italy, revised Sep 2011.
    15. Mayag, Brice & Bouyssou, Denis, 2020. "Necessary and possible interaction between criteria in a 2-additive Choquet integral model," European Journal of Operational Research, Elsevier, vol. 283(1), pages 308-320.
    16. Ki-Hong Jung & Jinwon Lee & Chris Dardick & Young-Su Seo & Peijian Cao & Patrick Canlas & Jirapa Phetsom & Xia Xu & Shu Ouyang & Kyungsook An & Yun-Ja Cho & Geun-Cheol Lee & Yoosook Lee & Gynheung An , 2008. "Identification and Functional Analysis of Light-Responsive Unique Genes and Gene Family Members in Rice," PLOS Genetics, Public Library of Science, vol. 4(8), pages 1-19, August.
    17. Sébastien Courtin & Rodrigue Tido Takeng & Frédéric Chantreuil, 2020. "Decomposition of interaction indices: alternative interpretations of cardinal-probabilistic interaction indices," Working Papers hal-02952516, HAL.
    18. van den Brink, Rene & van der Laan, Gerard, 2005. "A class of consistent share functions for games in coalition structure," Games and Economic Behavior, Elsevier, vol. 51(1), pages 193-212, April.
    19. Liginlal, Divakaran & Ow, Terence T., 2005. "On policy capturing with fuzzy measures," European Journal of Operational Research, Elsevier, vol. 167(2), pages 461-474, December.
    20. Silvia Bortot & Mario Fedrizzi & Silvio Giove, 2011. "Modelling fraud detection by attack trees and Choquet integral," DISA Working Papers 2011/09, Department of Computer and Management Sciences, University of Trento, Italy, revised 31 Aug 2011.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0010064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.