IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/1001200.html
   My bibliography  Save this article

Fossilized Biophotonic Nanostructures Reveal the Original Colors of 47-Million-Year-Old Moths

Author

Listed:
  • Maria E McNamara
  • Derek E G Briggs
  • Patrick J Orr
  • Sonja Wedmann
  • Heeso Noh
  • Hui Cao

Abstract

Original structural colors reconstructed in fossil moths had a dual defensive function and illuminate the evolution of communication strategies in insects. Structural colors are generated by scattering of light by variations in tissue nanostructure. They are widespread among animals and have been studied most extensively in butterflies and moths (Lepidoptera), which exhibit the widest diversity of photonic nanostructures, resultant colors, and visual effects of any extant organism. The evolution of structural coloration in lepidopterans, however, is poorly understood. Existing hypotheses based on phylogenetic and/or structural data are controversial and do not incorporate data from fossils. Here we report the first example of structurally colored scales in fossil lepidopterans; specimens are from the 47-million-year-old Messel oil shale (Germany). The preserved colors are generated by a multilayer reflector comprised of a stack of perforated laminae in the scale lumen; differently colored scales differ in their ultrastructure. The original colors were altered during fossilization but are reconstructed based upon preserved ultrastructural detail. The dorsal surface of the forewings was a yellow-green color that probably served as a dual-purpose defensive signal, i.e. aposematic during feeding and cryptic at rest. This visual signal was enhanced by suppression of iridescence (change in hue with viewing angle) achieved via two separate optical mechanisms: extensive perforation, and concave distortion, of the multilayer reflector. The fossils provide the first evidence, to our knowledge, for the function of structural color in fossils and demonstrate the feasibility of reconstructing color in non-metallic lepidopteran fossils. Plastic scale developmental processes and complex optical mechanisms for interspecific signaling had clearly evolved in lepidopterans by the mid-Eocene. Author Summary: Biological structural colors are generated when light is scattered by nanostructures in tissues. Such colors have diverse functions for communication both among and between species. Structural colors are most complex in extant butterflies and moths (lepidopterans), but the evolution of such colors and their functions in this group of organisms is poorly understood. Fossils can provide insights into the evolution of biological structures, but evidence of structurally colored tissues was hitherto unknown in fossil lepidopterans. Here, we report the preservation of structurally colored scales in fossil moths with striking metallic hues from the ∼47-million-year-old (Eocene) GrubeMessel oil shales (Germany). We identify the color-producing nanostructure in the scales and show that the original colors were altered during fossilization. Preserved details in the scales allow us to reconstruct the original colors and show that the dorsal surface of the forewings was yellow-green. The optical properties of the scales strongly indicate that the color functioned as a warning signal during feeding but was cryptic when the moths were at rest. Our results confirm that structural colors can be reconstructed even in non-metallic lepidopteran fossils and show that defensive structural coloration had evolved in insects by the mid-Eocene.

Suggested Citation

  • Maria E McNamara & Derek E G Briggs & Patrick J Orr & Sonja Wedmann & Heeso Noh & Hui Cao, 2011. "Fossilized Biophotonic Nanostructures Reveal the Original Colors of 47-Million-Year-Old Moths," PLOS Biology, Public Library of Science, vol. 9(11), pages 1-8, November.
  • Handle: RePEc:plo:pbio00:1001200
    DOI: 10.1371/journal.pbio.1001200
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001200
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.1001200&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.1001200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pete Vukusic & J. Roy Sambles, 2003. "Photonic structures in biology," Nature, Nature, vol. 424(6950), pages 852-855, August.
    2. Kathleen L. Prudic & Ana K. Skemp & Daniel R. Papaj, 2007. "Aposematic coloration, luminance contrast, and the benefits of conspicuousness," Behavioral Ecology, International Society for Behavioral Ecology, vol. 18(1), pages 41-46, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amanda M Franklin & Matthew B Applegate & Sara M Lewis & Fiorenzo G Omenetto, 2017. "Stomatopods detect and assess achromatic cues in contests," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(5), pages 1329-1336.
    2. Marie-Christin Hardenbicker & Cynthia Tedore, 2023. "Peacock spiders prefer image statistics of average natural scenes over those of male ornamentation," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(5), pages 719-728.
    3. Fillion, R.M. & Riahi, A.R. & Edrisy, A., 2014. "A review of icing prevention in photovoltaic devices by surface engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 797-809.
    4. Jinrong Liu & Mathias Nero & Kjell Jansson & Tom Willhammar & Mika H. Sipponen, 2023. "Photonic crystals with rainbow colors by centrifugation-assisted assembly of colloidal lignin nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Xue Chen & Mengfen Che & Weidong Xu & Zhongbin Wu & Yung Doug Suh & Suli Wu & Xiaowang Liu & Wei Huang, 2024. "Matrix-induced defects and molecular doping in the afterglow of SiO2 microparticles," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Shanks, Katie & Senthilarasu, S. & Mallick, Tapas K., 2016. "Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 394-407.
    7. Bagnall, Darren M. & Boreland, Matt, 2008. "Photovoltaic technologies," Energy Policy, Elsevier, vol. 36(12), pages 4390-4396, December.
    8. Wenhe Xie & Yuan Ren & Fengluan Jiang & Xin-Yu Huang & Bingjie Yu & Jianhong Liu & Jichun Li & Keyu Chen & Yidong Zou & Bingwen Hu & Yonghui Deng, 2023. "Solvent-pair surfactants enabled assembly of clusters and copolymers towards programmed mesoporous metal oxides," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Ke, Yujie & Tan, Yutong & Feng, Chengchen & Chen, Cong & Lu, Qi & Xu, Qiyang & Wang, Tao & Liu, Hai & Liu, Xinghai & Peng, Jinqing & Long, Yi, 2022. "Tetra-Fish-Inspired aesthetic thermochromic windows toward Energy-Saving buildings," Applied Energy, Elsevier, vol. 315(C).
    10. Ahmet F. Demirörs & Erik Poloni & Maddalena Chiesa & Fabio L. Bargardi & Marco R. Binelli & Wilhelm Woigk & Lucas D. C. Castro & Nicole Kleger & Fergal B. Coulter & Alba Sicher & Henning Galinski & Fr, 2022. "Three-dimensional printing of photonic colloidal glasses into objects with isotropic structural color," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Katja Kuitunen & Alexander Kovalev & Stanislav N Gorb, 2014. "Sex-Related Effects in the Superhydrophobic Properties of Damselfly Wings in Young and Old Calopteryx splendens," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
    12. Ossi Nokelainen & Sanni A. Silvasti & Sharon Y. Strauss & Niklas Wahlberg & Johanna Mappes, 2024. "Predator selection on phenotypic variability of cryptic and aposematic moths," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:1001200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.