IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/0030160.html
   My bibliography  Save this article

Directed Migration of Positively Selected Thymocytes Visualized in Real Time

Author

Listed:
  • Colleen M Witt
  • Subhadip Raychaudhuri
  • Brian Schaefer
  • Arup K Chakraborty
  • Ellen A Robey

Abstract

Development of many vertebrate tissues involves long-range cell migrations. In most cases, these migrations have been inferred from analysis of single time points and the migration process has not been directly observed and quantitated in real time. In the mammalian adult thymus, immature CD4+CD8+ double-positive (DP) thymocytes are found in the outer cortex, whereas after T cell antigen receptor (TCR) repertoire selection, CD4+CD8– and CD4–CD8+ single-positive (SP) thymocytes are found in the central medulla. Here we have used two-photon laser-scanning microscopy and quantitative analysis of four-dimensional cell migration data to investigate the movement of thymocytes through the cortex in real time within intact thymic lobes. We show that prior to positive selection, cortical thymocytes exhibit random walk migration. In contrast, positive selection is correlated with the appearance of a thymocyte population displaying rapid, directed migration toward the medulla. These studies provide our first glimpse into the dynamics of developmentally programmed, long-range cell migration in the mammalian thymus. Two-photon laser-scanning microscopy reveals the change from random motion to directed migration that occurs when thymocytes undergo positive selection.

Suggested Citation

  • Colleen M Witt & Subhadip Raychaudhuri & Brian Schaefer & Arup K Chakraborty & Ellen A Robey, 2005. "Directed Migration of Positively Selected Thymocytes Visualized in Real Time," PLOS Biology, Public Library of Science, vol. 3(6), pages 1-1, May.
  • Handle: RePEc:plo:pbio00:0030160
    DOI: 10.1371/journal.pbio.0030160
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0030160
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.0030160&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.0030160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thorsten R. Mempel & Sarah E. Henrickson & Ulrich H. von Andrian, 2004. "T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases," Nature, Nature, vol. 427(6970), pages 154-159, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward J Banigan & Tajie H Harris & David A Christian & Christopher A Hunter & Andrea J Liu, 2015. "Heterogeneous CD8+ T Cell Migration in the Lymph Node in the Absence of Inflammation Revealed by Quantitative Migration Analysis," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
    2. Daisuke Imoto & Nen Saito & Akihiko Nakajima & Gen Honda & Motohiko Ishida & Toyoko Sugita & Sayaka Ishihara & Koko Katagiri & Chika Okimura & Yoshiaki Iwadate & Satoshi Sawai, 2021. "Comparative mapping of crawling-cell morphodynamics in deep learning-based feature space," PLOS Computational Biology, Public Library of Science, vol. 17(8), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian J Schmidt & Jason A Papin & Michael B Lawrence, 2009. "Nano-motion Dynamics are Determined by Surface-Tethered Selectin Mechanokinetics and Bond Formation," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-19, December.
    2. Kenneth Letendre & Emmanuel Donnadieu & Melanie E Moses & Judy L Cannon, 2015. "Bringing Statistics Up to Speed with Data in Analysis of Lymphocyte Motility," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.
    3. Fan Xia & Cheng-Rui Qian & Zhou Xun & Yannick Hamon & Anne-Marie Sartre & Anthony Formisano & Sébastien Mailfert & Marie-Claire Phelipot & Cyrille Billaudeau & Sébastien Jaeger & Jacques Nunès & Xiao-, 2018. "TCR and CD28 Concomitant Stimulation Elicits a Distinctive Calcium Response in Naive T Cells," Post-Print hal-02084941, HAL.
    4. Frederik Graw & Roland R Regoes, 2009. "Investigating CTL Mediated Killing with a 3D Cellular Automaton," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-12, August.
    5. G Matthew Fricke & Kenneth A Letendre & Melanie E Moses & Judy L Cannon, 2016. "Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-23, March.
    6. Hong Sheng Quah & Elaine Yiqun Cao & Lisda Suteja & Constance H. Li & Hui Sun Leong & Fui Teen Chong & Shilpi Gupta & Camille Arcinas & John F. Ouyang & Vivian Ang & Teja Celhar & Yunqian Zhao & Hui C, 2023. "Single cell analysis in head and neck cancer reveals potential immune evasion mechanisms during early metastasis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Frederic Geissmann & Thomas O Cameron & Stephane Sidobre & Natasha Manlongat & Mitchell Kronenberg & Michael J Briskin & Michael L Dustin & Dan R Littman, 2005. "Intravascular Immune Surveillance by CXCR6+ NKT Cells Patrolling Liver Sinusoids," PLOS Biology, Public Library of Science, vol. 3(4), pages 1-1, April.
    8. Elisabeth H. Vollmann & Kristin Rattay & Olga Barreiro & Aude Thiriot & Rebecca A. Fuhlbrigge & Vladimir Vrbanac & Ki-Wook Kim & Steffen Jung & Andrew M. Tager & Ulrich H. von Andrian, 2021. "Specialized transendothelial dendritic cells mediate thymic T-cell selection against blood-borne macromolecules," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    9. Renske M A Vroomans & Athanasius F M Marée & Rob J de Boer & Joost B Beltman, 2012. "Chemotactic Migration of T Cells towards Dendritic Cells Promotes the Detection of Rare Antigens," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-13, November.
    10. Edward J Banigan & Tajie H Harris & David A Christian & Christopher A Hunter & Andrea J Liu, 2015. "Heterogeneous CD8+ T Cell Migration in the Lymph Node in the Absence of Inflammation Revealed by Quantitative Migration Analysis," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:0030160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.