IDEAS home Printed from https://ideas.repec.org/a/pal/pbapdi/v20y2024i1d10.1057_s41254-021-00210-w.html
   My bibliography  Save this article

Assessing the leeway of state-led strategic communication abroad: a comparison of news coverage on Austria, Germany, and Switzerland in Arabic

Author

Listed:
  • Andrea Häuptli

    (University of Zurich)

  • Daniel Vogler

    (University of Zurich)

Abstract

Public diplomacy programmes with the goal to enhance a country’s reputation and image abroad have become wide-spread practice, also among small states with little geopolitical relevance. News media offer one of the most important platforms of their implementation. But do small states have the leeway to successfully implement their communication strategies on a global scale? Are media-based public diplomacy strategies even an option for those cases? This study assesses these questions based on international media resonance of states. Relating to the theoretical approach of country news value literature, a comparative research design is implemented. It analyses news coverage on the three German-speaking countries Germany, Austria, and Switzerland, performing a multi-level automated text analysis of 11,513 news media articles in Arabic. In accordance with existing empirical and theoretical contributions, it is shown that high-status states have more resonance-based leeway. Nevertheless, media resonance-based leeway of smaller states with lower status is caused differently, i.e. by their political, rather than their economic or military power.

Suggested Citation

  • Andrea Häuptli & Daniel Vogler, 2024. "Assessing the leeway of state-led strategic communication abroad: a comparison of news coverage on Austria, Germany, and Switzerland in Arabic," Place Branding and Public Diplomacy, Palgrave Macmillan, vol. 20(1), pages 12-23, March.
  • Handle: RePEc:pal:pbapdi:v:20:y:2024:i:1:d:10.1057_s41254-021-00210-w
    DOI: 10.1057/s41254-021-00210-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41254-021-00210-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41254-021-00210-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grün, Bettina & Hornik, Kurt, 2011. "topicmodels: An R Package for Fitting Topic Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i13).
    2. Geoffrey Cowan & Amelia Arsenault, 2008. "Moving from Monologue to Dialogue to Collaboration: The Three Layers of Public Diplomacy," The ANNALS of the American Academy of Political and Social Science, , vol. 616(1), pages 10-30, March.
    3. Feinerer, Ingo & Hornik, Kurt & Meyer, David, 2008. "Text Mining Infrastructure in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i05).
    4. de Vries, Erik & Schoonvelde, Martijn & Schumacher, Gijs, 2018. "No Longer Lost in Translation: Evidence that Google Translate Works for Comparative Bag-of-Words Text Applications," Political Analysis, Cambridge University Press, vol. 26(4), pages 417-430, October.
    5. Alana Siegner & Jennifer Sowerwine & Charisma Acey, 2018. "Does Urban Agriculture Improve Food Security? Examining the Nexus of Food Access and Distribution of Urban Produced Foods in the United States: A Systematic Review," Sustainability, MDPI, vol. 10(9), pages 1-27, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Sbalchiero & Maciej Eder, 2020. "Topic modeling, long texts and the best number of topics. Some Problems and solutions," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(4), pages 1095-1108, August.
    2. Daoud, Adel & Kohl, Sebastian, 2016. "How much do sociologists write about economic topics? Using big data to test some conventional views in economic sociology, 1890 to 2014," MPIfG Discussion Paper 16/7, Max Planck Institute for the Study of Societies.
    3. Holand, Øystein & Contiero, Barbara & Næss, Marius W. & Cozzi, Giulio, 2024. "“The Times They Are A-Changin' “ – research trends and perspectives of reindeer pastoralism – A review using text mining and topic modelling," Land Use Policy, Elsevier, vol. 136(C).
    4. Cho, Yung-Jan & Fu, Pei-Wen & Wu, Chi-Cheng, 2017. "Popular Research Topics in Marketing Journals, 1995–2014," Journal of Interactive Marketing, Elsevier, vol. 40(C), pages 52-72.
    5. Motta Queiroz, Mariza & Roque, Carlos & Moura, Filipe & Marôco, João, 2024. "Understanding the expectations of parents regarding their children's school commuting by public transport using latent Dirichlet Allocation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    6. João Guerreiro & Paulo Rita & Duarte Trigueiros, 2016. "A Text Mining-Based Review of Cause-Related Marketing Literature," Journal of Business Ethics, Springer, vol. 139(1), pages 111-128, November.
    7. Abhinav Khare & Qing He & Rajan Batta, 2020. "Predicting gasoline shortage during disasters using social media," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 693-726, September.
    8. Lehotský, Lukáš & Černoch, Filip & Osička, Jan & Ocelík, Petr, 2019. "When climate change is missing: Media discourse on coal mining in the Czech Republic," Energy Policy, Elsevier, vol. 129(C), pages 774-786.
    9. Doblinger, Claudia & Surana, Kavita & Li, Deyu & Hultman, Nathan & Anadón, Laura Díaz, 2022. "How do global manufacturing shifts affect long-term clean energy innovation? A study of wind energy suppliers," Research Policy, Elsevier, vol. 51(7).
    10. Andres, Maximilian & Bruttel, Lisa & Friedrichsen, Jana, 2023. "How communication makes the difference between a cartel and tacit collusion: A machine learning approach," European Economic Review, Elsevier, vol. 152(C).
    11. Hudson Golino & Alexander P. Christensen & Robert Moulder & Seohyun Kim & Steven M. Boker, 2022. "Modeling Latent Topics in Social Media using Dynamic Exploratory Graph Analysis: The Case of the Right-wing and Left-wing Trolls in the 2016 US Elections," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 156-187, March.
    12. Sun, Katherine Qianwen & Slepian, Michael L., 2020. "The conversations we seek to avoid," Organizational Behavior and Human Decision Processes, Elsevier, vol. 160(C), pages 87-105.
    13. Rieger, Jonas & von Nordheim, Gerret, 2021. "corona100d: German-language Twitter dataset of the first 100 days after Chancellor Merkel addressed the coronavirus outbreak on TV," DoCMA Working Papers 4, TU Dortmund University, Dortmund Center for Data-based Media Analysis (DoCMA).
    14. Garner, Benjamin & Thornton, Corliss & Luo Pawluk, Anita & Mora Cortez, Roberto & Johnston, Wesley & Ayala, Cesar, 2022. "Utilizing text-mining to explore consumer happiness within tourism destinations," Journal of Business Research, Elsevier, vol. 139(C), pages 1366-1377.
    15. Shreya Dubey & Marijn H. C. Meijers & Eline S. Smit & Edith G. Smit, 2024. "Beyond climate change? Environmental discourse on the planetary boundaries in Twitter networks," Climatic Change, Springer, vol. 177(5), pages 1-23, May.
    16. Anke Piepenbrink & Elkin Nurmammadov, 2015. "Topics in the literature of transition economies and emerging markets," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2107-2130, March.
    17. Christian WEISMAYER, 2022. "Applied Research in Quality of Life: A Computational Literature Review," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 17(3), pages 1433-1458, June.
    18. Arenas Gaitán, Jorge & Ramírez-Correa, Patricio E., 2023. "COVID-19 and telemedicine: A netnography approach," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    19. Polyzos, Efstathios & Wang, Fang, 2022. "Twitter and market efficiency in energy markets: Evidence using LDA clustered topic extraction," Energy Economics, Elsevier, vol. 114(C).
    20. Jiang, Hanchen & Qiang, Maoshan & Lin, Peng, 2016. "A topic modeling based bibliometric exploration of hydropower research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 226-237.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:pbapdi:v:20:y:2024:i:1:d:10.1057_s41254-021-00210-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.