IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v9y2022i1d10.1057_s41599-022-01360-9.html
   My bibliography  Save this article

The impacts of carbon pricing on the electricity market in Japan

Author

Listed:
  • Ding Ding

    (Anhui Xinhua University)

Abstract

To achieve carbon neutrality by 2050, Japan should speed up reducing fossil fuel reliance on production, especially for energy-intensive sectors. One way is by implementing a carbon pricing system, converting emissions from fossil fuels to costs of production and consumption. This study focuses on the correlation between the price of wholesale electricity spot market and carbon cost of nine regions in Japan through carbon cost pass-through rate. This paper applies polynomial OLS regression with degree two through machine learning technics to better fit the relationship between electricity price and demand and also applies a generalized additive model to capture the nonlinear relationship between fuel spread and carbon cost and test the robustness of estimated CPTR. The results show that Hokuriku, Kyushu, Shikoku, Tohoku, and Tokyo have a lower value carbon cost pass-through rate while Kansai, Chubu, and Chugoku have a higher rate of carbon cost pass-through. There is a special case in Hokkaido as the negative relationship between electricity price and carbon cost. Those findings are also crucial in supporting future policy adjustments.

Suggested Citation

  • Ding Ding, 2022. "The impacts of carbon pricing on the electricity market in Japan," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:pal:palcom:v:9:y:2022:i:1:d:10.1057_s41599-022-01360-9
    DOI: 10.1057/s41599-022-01360-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-022-01360-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-022-01360-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natalia Fabra & Mar Reguant, 2014. "Pass-Through of Emissions Costs in Electricity Markets," American Economic Review, American Economic Association, vol. 104(9), pages 2872-2899, September.
    2. Nazifi, Fatemeh & Trück, Stefan & Zhu, Liangxu, 2021. "Carbon pass-through rates on spot electricity prices in Australia," Energy Economics, Elsevier, vol. 96(C).
    3. Fatemeh Nazifi, 2016. "The pass-through rates of carbon costs on to electricity prices within the Australian National Electricity Market," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(1), pages 41-62, January.
    4. Yihsu Chen & Jos Sijm & Benjamin Hobbs & Wietze Lise, 2008. "Implications of CO 2 emissions trading for short-run electricity market outcomes in northwest Europe," Journal of Regulatory Economics, Springer, vol. 34(3), pages 251-281, December.
    5. Sijm, Jos & Chen, Yihsu & Hobbs, Benjamin F., 2012. "The impact of power market structure on CO2 cost pass-through to electricity prices under quantity competition – A theoretical approach," Energy Economics, Elsevier, vol. 34(4), pages 1143-1152.
    6. Jos Sijm & Karsten Neuhoff & Yihsu Chen, 2006. "CO 2 cost pass-through and windfall profits in the power sector," Climate Policy, Taylor & Francis Journals, vol. 6(1), pages 49-72, January.
    7. M. T. Barlow, 2002. "A Diffusion Model For Electricity Prices," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 287-298, October.
    8. Jin Fan & Dingtao Zhao & Yanrui Wu & Jiuchang Wei, 2014. "Carbon Pricing and Electricity Market Reforms in China," Economics Discussion / Working Papers 14-03, The University of Western Australia, Department of Economics.
    9. Simshauser, Paul & Doan, Thao & Lacey, Ben, 2007. "The Outlook for the Economic and Environmental Performance of Australia's National Electricity Market in 2030," The Electricity Journal, Elsevier, vol. 20(6), pages 58-75, July.
    10. Kanamura, Takashi & Ohashi, Kazuhiko, 2007. "A structural model for electricity prices with spikes: Measurement of spike risk and optimal policies for hydropower plant operation," Energy Economics, Elsevier, vol. 29(5), pages 1010-1032, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Anthony Howard & Bo Nørregaard Jørgensen & Zheng Ma, 2023. "Multi-Method Simulation and Multi-Objective Optimization for Energy-Flexibility-Potential Assessment of Food-Production Process Cooling," Energies, MDPI, vol. 16(3), pages 1-27, February.
    2. Marco Amendola & Marco Valente, 2024. "Taxing Carbon Emissions and Green Transition: The Case of the Italian Electricity Market," LEM Papers Series 2024/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nazifi, Fatemeh & Trück, Stefan & Zhu, Liangxu, 2021. "Carbon pass-through rates on spot electricity prices in Australia," Energy Economics, Elsevier, vol. 96(C).
    2. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    3. Fatemeh Nazifi, 2016. "The pass-through rates of carbon costs on to electricity prices within the Australian National Electricity Market," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(1), pages 41-62, January.
    4. Chen, Zhe & Chen, Yan-ling & Su, Yue & Wang, Xue-ying & Wu, You, 2023. "The CO2 cost pass-through in nonlinear emission trading schemes," Journal of Commodity Markets, Elsevier, vol. 30(C).
    5. Fraser, Alastair & Kuok, Jonathan Chiew Sheen & Leslie, Gordon W., 2023. "Climate reform and transitional industry assistance: Windfall profits for polluters?," Energy Economics, Elsevier, vol. 121(C).
    6. Ma, Ning & Li, Huajiao & Zhang, Jinwei & Han, Xiaodan & Feng, Sida & Arif, Asma, 2021. "The short-term price effects and transmission mechanism of CO2 cost pass-through in China: A partial transmission model," Resources Policy, Elsevier, vol. 70(C).
    7. Wang, M. & Zhou, P., 2017. "Does emission permit allocation affect CO2 cost pass-through? A theoretical analysis," Energy Economics, Elsevier, vol. 66(C), pages 140-146.
    8. Woo, C.K. & Chen, Y. & Olson, A. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Electricity price behavior and carbon trading: New evidence from California," Applied Energy, Elsevier, vol. 204(C), pages 531-543.
    9. Brown, David P. & Eckert, Andrew & Eckert, Heather, 2018. "Carbon pricing with an output subsidy under imperfect competition: The case of Alberta's restructured electricity market," Resource and Energy Economics, Elsevier, vol. 52(C), pages 102-123.
    10. Woo, C.K. & Olson, A. & Chen, Y. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Does California's CO2 price affect wholesale electricity prices in the Western U.S.A.?," Energy Policy, Elsevier, vol. 110(C), pages 9-19.
    11. Pawel Maryniak & Stefan Trueck & Rafal Weron, 2016. "Carbon pricing, forward risk premiums and pass-through rates in Australian electricity futures markets," HSC Research Reports HSC/16/10, Hugo Steinhaus Center, Wroclaw University of Technology.
    12. Maryniak, Paweł & Trück, Stefan & Weron, Rafał, 2019. "Carbon pricing and electricity markets — The case of the Australian Clean Energy Bill," Energy Economics, Elsevier, vol. 79(C), pages 45-58.
    13. Huisman, Ronald & Kiliç, Mehtap, 2015. "Time variation in European carbon pass-through rates in electricity futures prices," Energy Policy, Elsevier, vol. 86(C), pages 239-249.
    14. Chen, Yihsu & Zhang, Duan & Takashima, Ryuta, 2019. "Carbon emission forensic in the energy sector: Is it worth the effort?," Energy Policy, Elsevier, vol. 128(C), pages 868-878.
    15. Andrianesis, Panagiotis & Biskas, Pandelis & Liberopoulos, George, 2021. "Evaluating the cost of emissions in a pool-based electricity market," Applied Energy, Elsevier, vol. 298(C).
    16. Guo, Bowei & Castagneto Gissey, Giorgio, 2021. "Cost pass-through in the British wholesale electricity market," Energy Economics, Elsevier, vol. 102(C).
    17. Inha Oh & Yeongjun Yeo & Jeong-Dong Lee, 2015. "Efficiency versus Equality: Comparing Design Options for Indirect Emissions Accounting in the Korean Emissions Trading Scheme," Sustainability, MDPI, vol. 7(11), pages 1-21, November.
    18. Gonçalves, Ricardo & Menezes, Flávio, 2024. "The carbon tax and the crisis in Australia’s National Electricity Market," Energy Economics, Elsevier, vol. 133(C).
    19. Correa-Giraldo, Manuel & Garcia-Rendon, John J. & Perez, Alex, 2021. "Strategic behaviors and transfer of wholesale costs to retail prices in the electricity market: Evidence from Colombia," Energy Economics, Elsevier, vol. 99(C).
    20. Wu, Liangpeng & Zhu, Qingyuan, 2023. "Has the Emissions Trading Scheme (ETS) promoted the end-of-pipe emissions reduction? Evidence from China's residents," Energy, Elsevier, vol. 277(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:9:y:2022:i:1:d:10.1057_s41599-022-01360-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.