IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v11y2024i1d10.1057_s41599-024-03806-8.html
   My bibliography  Save this article

Misinformation and higher-order evidence

Author

Listed:
  • Brian Ball

    (Northeastern University - London)

  • Alexandros Koliousis

    (Northeastern University - London)

  • Amil Mohanan

    (Northeastern University - London)

  • Mike Peacey

    (University of Bristol)

Abstract

This paper uses computational methods to simultaneously investigate the epistemological effects of misinformation on communities of rational agents, while also contributing to the philosophical debate on ‘higher-order’ evidence (i.e. evidence that bears on the quality and/or import of one’s evidence). Modelling communities as networks of individuals, each with a degree of belief in a given target proposition, it simulates the introduction of unreliable mis- and disinformants, and records the epistemological consequences for these communities. First, using small, artificial networks, it compares the effects, when agents who are aware of the prevalence of mis- or disinformation in their communities, either deny the import of this higher-order evidence, or attempt to accommodate it by distrusting the information in their environment. Second, deploying simulations on a large(r) real-world network, it observes the impact of increasing levels of misinformation on trusting agents, as well as of more minimal, but structurally targeted, unreliability. Comparing the two information processing strategies in an artificial context, it finds that there is a (familiar) trade-off between accuracy (in arriving at a correct consensus) and efficiency (in doing so in a timely manner). And in a more realistic setting, community confidence in the truth is seen to be depressed in the presence of even minimal levels of misinformation.

Suggested Citation

  • Brian Ball & Alexandros Koliousis & Amil Mohanan & Mike Peacey, 2024. "Misinformation and higher-order evidence," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
  • Handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03806-8
    DOI: 10.1057/s41599-024-03806-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-024-03806-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-024-03806-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petter Holme, 2019. "Rare and everywhere: Perspectives on scale-free networks," Nature Communications, Nature, vol. 10(1), pages 1-3, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas J. Sargent & John Stachurski, 2022. "Economic Networks: Theory and Computation," Papers 2203.11972, arXiv.org, revised Jul 2022.
    2. Fleming, Sean W., 2021. "Scale-free networks, 1/f dynamics, and nonlinear conflict size scaling from an agent-based simulation model of societal-scale bilateral conflict and cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    3. Ho-Chun Herbert Chang & Brooke Harrington & Feng Fu & Daniel Rockmore, 2023. "Complex Systems of Secrecy: The Offshore Networks of Oligarchs," Papers 2303.03371, arXiv.org.
    4. Fu, Xiuwen & Wang, Ye & Yang, Yongsheng & Postolache, Octavian, 2022. "Analysis on cascading reliability of edge-assisted Internet of Things," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Meng, Xiangyi & Zhou, Bin, 2023. "Scale-free networks beyond power-law degree distribution," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    6. Li, Xiaosi & Li, Jiayi & Yang, Haichuan & Wang, Yirui & Gao, Shangce, 2022. "Population interaction network in representative differential evolution algorithms: Power-law outperforms Poisson distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    7. Li, Fangyi & Cao, Xin & Ou, Rui, 2021. "A network-based evolutionary analysis of the diffusion of cleaner energy substitution in enterprises: The roles of PEST factors," Energy Policy, Elsevier, vol. 156(C).
    8. Bin Zhou & Petter Holme & Zaiwu Gong & Choujun Zhan & Yao Huang & Xin Lu & Xiangyi Meng, 2023. "The nature and nurture of network evolution," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Jiang, Xiong-Fei & Xiong, Long & Bai, Ling & Lin, Jie & Zhang, Jing-Feng & Yan, Kun & Zhu, Jia-Zhen & Zheng, Bo & Zheng, Jian-Jun, 2022. "Structure and dynamics of human complication-disease network," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    10. Koponen, Ismo T. & Palmgren, Elina & Keski-Vakkuri, Esko, 2021. "Characterising heavy-tailed networks using q-generalised entropy and q-adjacency kernels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    11. Johnston, Josh & Andersen, Tim, 2022. "Random processes with high variance produce scale free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    12. Cantone, Giulio Giacomo & Tomaselli, Venera, 2023. "Quasi-experimental network-based design for semantic analysis of small clusters of bi-polar online reviews," SocArXiv v7u3h, Center for Open Science.
    13. Valero, Jordi & Pérez-Casany, Marta & Duarte-López, Ariel, 2022. "The Zipf-Polylog distribution: Modeling human interactions through social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03806-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.