IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v11y2024i1d10.1057_s41599-024-03701-2.html
   My bibliography  Save this article

A regression method for estimating Gini index by decile

Author

Listed:
  • Xiaobo Shen

    (Xiamen University)

  • Pingsheng Dai

    (Jimei University)

Abstract

Based on the three-parametric Lorenz curve proposed by Kakwani (1980), this paper builds a multiple linear regression model to estimate the parameters by the weighted least square method named the regression method. Using the Lorenz curve, the Gini index and its variance are then calculated. Compared to the error minimization technique, the regression method has a better performance in estimating the Gini index using Kakwani (1980)’s Lorenz curve and a dataset of sixteen economies from the United Nation University-World Income Inequality Database (UNU-WIID). The results also suggest that the regression method has an advantage when estimating the Gini index and fitting the income shares by decile for the medium and higher inequality economies. We find that the three-parametric Lorenz curve has a better performance than the double-parametric Lorenz curve, and the double-parametric Lorenz curve is superior to the single-parametric Lorenz curve, judged by the RMSE of the actual Gini index and the estimated ones.

Suggested Citation

  • Xiaobo Shen & Pingsheng Dai, 2024. "A regression method for estimating Gini index by decile," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03701-2
    DOI: 10.1057/s41599-024-03701-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-024-03701-2
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-024-03701-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarabia, J. -M. & Castillo, Enrique & Slottje, Daniel J., 1999. "An ordered family of Lorenz curves," Journal of Econometrics, Elsevier, vol. 91(1), pages 43-60, July.
    2. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    3. Chotikapanich, Duangkamon & Griffiths, William E. & Rao, D. S. Prasada, 2007. "Estimating and Combining National Income Distributions Using Limited Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 97-109, January.
    4. Chotikapanich, Duangkamon & Valenzuela, Rebecca & Rao, D S Prasada, 1997. "Global and Regional Inequality in the Distribution of Income: Estimation with Limited and Incomplete Data," Empirical Economics, Springer, vol. 22(4), pages 533-546.
    5. Kakwani, N C & Podder, N, 1973. "On the Estimation of Lorenz Curves from Grouped Observations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(2), pages 278-292, June.
    6. Chotikapanich, Duangkamon & Griffiths, William E, 2002. "Estimating Lorenz Curves Using a Dirichlet Distribution," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 290-295, April.
    7. Kakwani, Nanak C & Podder, N, 1976. "Efficient Estimation of the Lorenz Curve and Associated Inequality Measures from Grouped Observations," Econometrica, Econometric Society, vol. 44(1), pages 137-148, January.
    8. Satya Paul & Sriram Shankar, 2020. "An alternative single parameter functional form for Lorenz curve," Empirical Economics, Springer, vol. 59(3), pages 1393-1402, September.
    9. Kwang Soo Cheong, 2002. "An empirical comparison of alternative functional forms for the Lorenz curve," Applied Economics Letters, Taylor & Francis Journals, vol. 9(3), pages 171-176.
    10. Chotikapanich, Duangkamon, 1993. "A comparison of alternative functional forms for the Lorenz curve," Economics Letters, Elsevier, vol. 41(2), pages 129-138.
    11. Vanesa Jorda & José María Sarabia & Markus Jäntti, 2021. "Inequality measurement with grouped data: Parametric and non‐parametric methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 964-984, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gholamreza Hajargasht & William E. Griffiths, 2016. "Inference for Lorenz Curves," Department of Economics - Working Papers Series 2022, The University of Melbourne.
    2. Genya Kobayashi & Kazuhiko Kakamu, 2019. "Approximate Bayesian computation for Lorenz curves from grouped data," Computational Statistics, Springer, vol. 34(1), pages 253-279, March.
    3. Thitithep Sitthiyot & Kanyarat Holasut, 2021. "A simple method for estimating the Lorenz curve," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-9, December.
    4. Chotikapanich, Duangkamon & Griffiths, William E, 2002. "Estimating Lorenz Curves Using a Dirichlet Distribution," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 290-295, April.
    5. Rohde, Nicholas, 2009. "An alternative functional form for estimating the Lorenz curve," Economics Letters, Elsevier, vol. 105(1), pages 61-63, October.
    6. Satya Paul & Sriram Shankar, 2020. "An alternative single parameter functional form for Lorenz curve," Empirical Economics, Springer, vol. 59(3), pages 1393-1402, September.
    7. WANG, Zuxiang & SMYTH, Russell & NG, Yew-Kwang, 2009. "A new ordered family of Lorenz curves with an application to measuring income inequality and poverty in rural China," China Economic Review, Elsevier, vol. 20(2), pages 218-235, June.
    8. Enora Belz, 2019. "Estimating Inequality Measures from Quantile Data," Economics Working Paper Archive (University of Rennes & University of Caen) 2019-09, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    9. Melanie Krause, 2014. "Parametric Lorenz Curves and the Modality of the Income Density Function," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(4), pages 905-929, December.
    10. Khosravi Tanak, A. & Mohtashami Borzadaran, G.R. & Ahmadi, Jafar, 2018. "New functional forms of Lorenz curves by maximizing Tsallis entropy of income share function under the constraint on generalized Gini index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 280-288.
    11. Enora Belz, 2019. "Estimating Inequality Measures from Quantile Data," Working Papers halshs-02320110, HAL.
    12. ZuXiang Wang & Yew-Kwang Ng & Russell Smyth, 2007. "Revisiting The Ordered Family Of Lorenz Curves," Monash Economics Working Papers 19-07, Monash University, Department of Economics.
    13. Wang, Yuanjun & You, Shibing, 2016. "An alternative method for modeling the size distribution of top wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 443-453.
    14. Johan Fellman, 2021. "Empirical Analyses of Income: Finland (2009) and Australia (1967-1968)," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 10(1), pages 1-3.
    15. Nicholas Rohde, 2008. "An alternative functional form for estimating the lorenz curve," Discussion Papers Series 384, School of Economics, University of Queensland, Australia.
    16. Andrew C. Chang & Phillip Li & Shawn M. Martin, 2018. "Comparing cross‐country estimates of Lorenz curves using a Dirichlet distribution across estimators and datasets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 473-478, April.
    17. Sarabia, José María & Gómez-Déniz, Emilio & Sarabia, María & Prieto, Faustino, 2010. "A general method for generating parametric Lorenz and Leimkuhler curves," Journal of Informetrics, Elsevier, vol. 4(4), pages 524-539.
    18. Lee, Ji Hyung & Sasaki, Yuya & Toda, Alexis Akira & Wang, Yulong, 2024. "Tuning parameter-free nonparametric density estimation from tabulated summary data," Journal of Econometrics, Elsevier, vol. 238(1).
    19. Louis Mesnard, 2022. "About some difficulties with the functional forms of Lorenz curves," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(4), pages 939-950, December.
    20. Jose-Mari Sarabia, 1997. "A hierarchy of lorenz curves based on the generalized tukey's lambda distribution," Econometric Reviews, Taylor & Francis Journals, vol. 16(3), pages 305-320.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03701-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.