IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v11y2024i1d10.1057_s41599-024-03606-0.html
   My bibliography  Save this article

Financial fraud detection through the application of machine learning techniques: a literature review

Author

Listed:
  • Ludivia Hernandez Aros

    (Universidad Cooperativa de Colombia)

  • Luisa Ximena Bustamante Molano

    (Universidad Cooperativa de Colombia)

  • Fernando Gutierrez-Portela

    (Universidad Cooperativa de Colombia)

  • John Johver Moreno Hernandez

    (Universidad Cooperativa de Colombia)

  • Mario Samuel Rodríguez Barrero

    (Universidad Cooperativa de Colombia)

Abstract

Financial fraud negatively impacts organizational administrative processes, particularly affecting owners and/or investors seeking to maximize their profits. Addressing this issue, this study presents a literature review on financial fraud detection through machine learning techniques. The PRISMA and Kitchenham methods were applied, and 104 articles published between 2012 and 2023 were examined. These articles were selected based on predefined inclusion and exclusion criteria and were obtained from databases such as Scopus, IEEE Xplore, Taylor & Francis, SAGE, and ScienceDirect. These selected articles, along with the contributions of authors, sources, countries, trends, and datasets used in the experiments, were used to detect financial fraud and its existing types. Machine learning models and metrics were used to assess performance. The analysis indicated a trend toward using real datasets. Notably, credit card fraud detection models are the most widely used for detecting credit card loan fraud. The information obtained by different authors was acquired from the stock exchanges of China, Canada, the United States, Taiwan, and Tehran, among other countries. Furthermore, the usage of synthetic data has been low (less than 7% of the employed datasets). Among the leading contributors to the studies, China, India, Saudi Arabia, and Canada remain prominent, whereas Latin American countries have few related publications.

Suggested Citation

  • Ludivia Hernandez Aros & Luisa Ximena Bustamante Molano & Fernando Gutierrez-Portela & John Johver Moreno Hernandez & Mario Samuel Rodríguez Barrero, 2024. "Financial fraud detection through the application of machine learning techniques: a literature review," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-22, December.
  • Handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03606-0
    DOI: 10.1057/s41599-024-03606-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-024-03606-0
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-024-03606-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanjay Kumar & Rafeeq Ahmed & Salil Bharany & Mohammed Shuaib & Tauseef Ahmad & Elsayed Tag Eldin & Ateeq Ur Rehman & Muhammad Shafiq, 2022. "Exploitation of Machine Learning Algorithms for Detecting Financial Crimes Based on Customers’ Behavior," Sustainability, MDPI, vol. 14(21), pages 1-24, October.
    2. Minghuan Shou & Xueqi Bao & Jie Yu, 2023. "An optimal weighted machine learning model for detecting financial fraud," Applied Economics Letters, Taylor & Francis Journals, vol. 30(4), pages 410-415, February.
    3. Esraa Faisal Malik & Khai Wah Khaw & Bahari Belaton & Wai Peng Wong & XinYing Chew, 2022. "Credit Card Fraud Detection Using a New Hybrid Machine Learning Architecture," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
    4. Tianlang Xiong & Zhishuo Ma & Zhuangzhuang Li & Jiangqianyi Dai, 2022. "The analysis of influence mechanism for internet financial fraud identification and user behavior based on machine learning approaches," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 996-1007, December.
    5. Yasheng Chen & Zhuojun Wu, 2022. "Financial Fraud Detection of Listed Companies in China: A Machine Learning Approach," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    6. Luis Gerardo Gage & Raúl Morales-Resendiz & John Arroyo & Jeniffer Rubio & Paolo Barucca, 2022. "Classifying payment patterns with artificial neural networks: an autoencoder approach," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Machine learning in central banking, volume 57, Bank for International Settlements.
    7. Juan Viera & Jose Aguilar & Maria Rodríguez-Moreno & Carlos Quintero-Gull, 2023. "Analysis of the Behavior Pattern of Energy Consumption through Online Clustering Techniques," Energies, MDPI, vol. 16(4), pages 1-17, February.
    8. Muhardi Saputra & Paulus Insap Santosa & Adhistya Erna Permanasari, 2023. "Consumer Behaviour and Acceptance in Fintech Adoption: A Systematic Literature Review," Acta Informatica Pragensia, Prague University of Economics and Business, vol. 2023(2), pages 468-489.
    9. Surjeet Dalal & Bijeta Seth & Magdalena Radulescu & Carmen Secara & Claudia Tolea, 2022. "Predicting Fraud in Financial Payment Services through Optimized Hyper-Parameter-Tuned XGBoost Model," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
    10. Papík, Mário & Papíková, Lenka, 2022. "Detecting accounting fraud in companies reporting under US GAAP through data mining," International Journal of Accounting Information Systems, Elsevier, vol. 45(C).
    11. Paolo Vanini & Sebastiano Rossi & Ermin Zvizdic & Thomas Domenig, 2023. "Online payment fraud: from anomaly detection to risk management," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
    12. Mario Zupan & Verica Budimir & Svjetlana Letinic, 2020. "Journal entry anomaly detection model," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(4), pages 197-209, October.
    13. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    14. Arévalo, Franklim & Barucca, Paolo & Téllez-León, Isela-Elizabeth & Rodríguez, William & Gage, Gerardo & Morales, Raúl, 2022. "Identifying clusters of anomalous payments in the salvadorian payment system," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 3(1).
    15. van Capelleveen, Guido & Poel, Mannes & Mueller, Roland M. & Thornton, Dallas & van Hillegersberg, Jos, 2016. "Outlier detection in healthcare fraud: A case study in the Medicaid dental domain," International Journal of Accounting Information Systems, Elsevier, vol. 21(C), pages 18-31.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajit Desai & Jacob Sharples & Anneke Kosse, 2024. "Finding a needle in a haystack: a machine learning framework for anomaly detection in payment systems," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Granular data: new horizons and challenges, volume 61, Bank for International Settlements.
    2. İlkay Unay-Gailhard & Mark A. Brennen, 2022. "How digital communications contribute to shaping the career paths of youth: a review study focused on farming as a career option," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(4), pages 1491-1508, December.
    3. Mahin Ghafari & Vali Baigi & Zahra Cheraghi & Amin Doosti-Irani, 2016. "The Prevalence of Asymptomatic Bacteriuria in Iranian Pregnant Women: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-10, June.
    4. Elizabeth T Cafiero-Fonseca & Andrew Stawasz & Sydney T Johnson & Reiko Sato & David E Bloom, 2017. "The full benefits of adult pneumococcal vaccination: A systematic review," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-23, October.
    5. Santos Urbina & Sofía Villatoro & Jesús Salinas, 2021. "Self-Regulated Learning and Technology-Enhanced Learning Environments in Higher Education: A Scoping Review," Sustainability, MDPI, vol. 13(13), pages 1-12, June.
    6. Oded Berger-Tal & Alison L Greggor & Biljana Macura & Carrie Ann Adams & Arden Blumenthal & Amos Bouskila & Ulrika Candolin & Carolina Doran & Esteban Fernández-Juricic & Kiyoko M Gotanda & Catherine , 2019. "Systematic reviews and maps as tools for applying behavioral ecology to management and policy," Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(1), pages 1-8.
    7. Nadine Desrochers & Adèle Paul‐Hus & Jen Pecoskie, 2017. "Five decades of gratitude: A meta‐synthesis of acknowledgments research," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(12), pages 2821-2833, December.
    8. Maryono, Maryono & Killoes, Aditya Marendra & Adhikari, Rajendra & Abdul Aziz, Ammar, 2024. "Agriculture development through multi-stakeholder partnerships in developing countries: A systematic literature review," Agricultural Systems, Elsevier, vol. 213(C).
    9. Alene Sze Jing Yong & Yi Heng Lim & Mark Wing Loong Cheong & Ednin Hamzah & Siew Li Teoh, 2022. "Willingness-to-pay for cancer treatment and outcome: a systematic review," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 1037-1057, August.
    10. Xue-Ying Xu & Hong Kong & Rui-Xiang Song & Yu-Han Zhai & Xiao-Fei Wu & Wen-Si Ai & Hong-Bo Liu, 2014. "The Effectiveness of Noninvasive Biomarkers to Predict Hepatitis B-Related Significant Fibrosis and Cirrhosis: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-16, June.
    11. Vicente Miñana-Signes & Manuel Monfort-Pañego & Javier Valiente, 2021. "Teaching Back Health in the School Setting: A Systematic Review of Randomized Controlled Trials," IJERPH, MDPI, vol. 18(3), pages 1-18, January.
    12. Agnieszka A. Tubis & Katarzyna Grzybowska, 2022. "In Search of Industry 4.0 and Logistics 4.0 in Small-Medium Enterprises—A State of the Art Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    13. Obsa Urgessa Ayana & Jima Degaga, 2022. "Effects of rural electrification on household welfare: a meta-regression analysis," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 69(2), pages 209-261, June.
    14. Caloffi, Annalisa & Colovic, Ana & Rizzoli, Valentina & Rossi, Federica, 2023. "Innovation intermediaries' types and functions: A computational analysis of the literature," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    15. García-Poole, Chloe & Byrne, Sonia & Rodrigo, María José, 2019. "How do communities intervene with adolescents at psychosocial risk? A systematic review of positive development programs," Children and Youth Services Review, Elsevier, vol. 99(C), pages 194-209.
    16. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Qing Ye & Bao-Xin Qian & Wei-Li Yin & Feng-Mei Wang & Tao Han, 2016. "Association between the HFE C282Y, H63D Polymorphisms and the Risks of Non-Alcoholic Fatty Liver Disease, Liver Cirrhosis and Hepatocellular Carcinoma: An Updated Systematic Review and Meta-Analysis o," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-17, September.
    18. Bishal Mohindru & David Turner & Tracey Sach & Diana Bilton & Siobhan Carr & Olga Archangelidi & Arjun Bhadhuri & Jennifer A. Whitty, 2020. "Health State Utility Data in Cystic Fibrosis: A Systematic Review," PharmacoEconomics - Open, Springer, vol. 4(1), pages 13-25, March.
    19. Subramaniam, Mega & Pang, Natalie & Morehouse, Shandra & Asgarali-Hoffman, S. Nisa, 2020. "Examining vulnerability in youth digital information practices scholarship: What are we missing or exhausting?," Children and Youth Services Review, Elsevier, vol. 116(C).
    20. Neal R. Haddaway & Matthew J. Page & Chris C. Pritchard & Luke A. McGuinness, 2022. "PRISMA2020: An R package and Shiny app for producing PRISMA 2020‐compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis," Campbell Systematic Reviews, John Wiley & Sons, vol. 18(2), June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03606-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.