IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i4p2472-d754786.html
   My bibliography  Save this article

The Design of a Multi-Period and Multi-Echelon Perishable Goods Supply Network under Uncertainty

Author

Listed:
  • Ieva Meidute-Kavaliauskiene

    (Research Group on Logistics and Defence Technology Management, General Jonas Zemaitis Military Academy of Lithuania, Silo 5a, 10322 Vilnius, Lithuania)

  • Figen Yıldırım

    (Department of International Trade, Istanbul Commerce University, Istanbul 34445, Turkey)

  • Shahryar Ghorbani

    (Department of Production Management, University of Sakarya, Sakarya 54050, Turkey)

  • Renata Činčikaitė

    (Research Group on Logistics and Defence Technology Management, General Jonas Zemaitis Military Academy of Lithuania, Silo 5a, 10322 Vilnius, Lithuania
    Business Management Faculty, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10332 Vilnius, Lithuania)

Abstract

The value of superior supply network design is becoming increasingly important, especially in the perishable supply chain. Due to the recent developments in perishable products, perishable product supply chain (PPSC) management has attracted many researchers. The purpose of this study was to present a multi-period and multi-echelon perishable supply chain with regards to procurement time, cycle cost, and customer satisfaction. This study presented a new form of location-routing in a supply chain network for perishable products, accounting for environmental considerations, cost, procurement time, and customer satisfaction, such that the total costs, delivery time, and the emission of pollutants in the network were minimized while customer satisfaction was maximized. We formulated the problem as a multi-objective, nonlinear, mixed-integer program and the hybrid approach was proposed to solve the model. The mean error of the proposed algorithm for the objective function compared to the exact method in solving the sample problems was less than 3.4%. The computational results revealed the efficiency of the proposed algorithm for a wide range of issues of various sizes.

Suggested Citation

  • Ieva Meidute-Kavaliauskiene & Figen Yıldırım & Shahryar Ghorbani & Renata Činčikaitė, 2022. "The Design of a Multi-Period and Multi-Echelon Perishable Goods Supply Network under Uncertainty," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2472-:d:754786
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/4/2472/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/4/2472/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Lin & Dababneh, Fadwa & Zhao, Jing, 2018. "Cost-effective supply chain for electric vehicle battery remanufacturing," Applied Energy, Elsevier, vol. 226(C), pages 277-286.
    2. Sahebi, Iman Ghasemian & Masoomi, Behzad & Ghorbani, Shahryar, 2020. "Expert oriented approach for analyzing the blockchain adoption barriers in humanitarian supply chain," Technology in Society, Elsevier, vol. 63(C).
    3. Akbarpour, Mina & Ali Torabi, S. & Ghavamifar, Ali, 2020. "Designing an integrated pharmaceutical relief chain network under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    4. Ieva Meidute-Kavaliauskiene & Vida Davidaviciene & Shahryar Ghorbani & Iman Ghasemian Sahebi, 2021. "Optimal Allocation of Gas Resources to Different Consumption Sectors Using Multi-Objective Goal Programming," Sustainability, MDPI, vol. 13(10), pages 1-19, May.
    5. Sujeet Kumar Singh & Mark Goh, 2019. "Multi-objective mixed integer programming and an application in a pharmaceutical supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 57(4), pages 1214-1237, February.
    6. Chia-Nan Wang & Nhat-Luong Nhieu & Yu-Chi Chung & Huynh-Tram Pham, 2021. "Multi-Objective Optimization Models for Sustainable Perishable Intermodal Multi-Product Networks with Delivery Time Window," Mathematics, MDPI, vol. 9(4), pages 1-25, February.
    7. Danijel Kovačić & Eloy Hontoria & Lorenzo Ros-McDonnell & Marija Bogataj, 2015. "Location and lead-time perturbations in multi-level assembly systems of perishable goods in Spanish baby food logistics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(3), pages 607-623, September.
    8. Zahiri, Behzad & Zhuang, Jun & Mohammadi, Mehrdad, 2017. "Toward an integrated sustainable-resilient supply chain: A pharmaceutical case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 109-142.
    9. Meisam Nasrollahi & Jafar Razmi, 2021. "A mathematical model for designing an integrated pharmaceutical supply chain with maximum expected coverage under uncertainty," Operational Research, Springer, vol. 21(1), pages 525-552, March.
    10. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    11. Sahebi, Iman Ghasemian & Mosayebi, Alireza & Masoomi, Behzad & Marandi, Fatemeh, 2022. "Modeling the enablers for blockchain technology adoption in renewable energy supply chain," Technology in Society, Elsevier, vol. 68(C).
    12. Alireza Arab & Iman Ghasemian Sahebi & Seyyed Abbas Alavi, 2017. "Assessing the Key Success Factors of Knowledge Management Adoption in Supply Chain," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 7(4), pages 401-418, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ieva Meidute-Kavaliauskiene & Halil Ibrahim Cebeci & Shahryar Ghorbani & Renata Činčikaitė, 2021. "An Integrated Approach for Evaluating Lean Innovation Practices in the Pharmaceutical Supply Chain," Logistics, MDPI, vol. 5(4), pages 1-17, October.
    2. Zhang, Yuwei & Li, Zhenping & Zhao, Yuwei, 2023. "Multi-mitigation strategies in medical supplies for epidemic outbreaks," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    3. Shiva Zandkarimkhani & Hassan Mina & Mehdi Biuki & Kannan Govindan, 2020. "A chance constrained fuzzy goal programming approach for perishable pharmaceutical supply chain network design," Annals of Operations Research, Springer, vol. 295(1), pages 425-452, December.
    4. Esmizadeh, Yalda & Bashiri, Mahdi & Jahani, Hamed & Almada-Lobo, Bernardo, 2021. "Cold chain management in hierarchical operational hub networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    5. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    6. Fatemeh Shekoohi Tolgari & Naeme Zarrinpoor, 2024. "A robust reverse pharmaceutical supply chain design considering perishability and sustainable development objectives," Annals of Operations Research, Springer, vol. 340(2), pages 981-1033, September.
    7. Cheramin, Meysam & Saha, Apurba Kumar & Cheng, Jianqiang & Paul, Sanjoy Kumar & Jin, Hongyue, 2021. "Resilient NdFeB magnet recycling under the impacts of COVID-19 pandemic: Stochastic programming and Benders decomposition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    8. Ieva Meidute-Kavaliauskiene & Vida Davidaviciene & Gencay Karakaya & Shahryar Ghorbani, 2021. "The Measurement of Organizational Social Media Integration Impact on Financial and Innovative Performance: An Integrated Model," Sustainability, MDPI, vol. 13(18), pages 1-16, September.
    9. Ronaldo Brito da Silva & Claudia Aparecida de Mattos, 2019. "Critical Success Factors of a Drug Traceability System for Creating Value in a Pharmaceutical Supply Chain (PSC)," IJERPH, MDPI, vol. 16(11), pages 1-18, June.
    10. Ieva Meidute-Kavaliauskiene & Nihal Sütütemiz & Figen Yıldırım & Shahryar Ghorbani & Renata Činčikaitė, 2022. "Optimizing Multi Cross-Docking Systems with a Multi-Objective Green Location Routing Problem Considering Carbon Emission and Energy Consumption," Energies, MDPI, vol. 15(4), pages 1-24, February.
    11. Malihe Niksirat & Mohsen Saffarian & Javad Tayyebi & Adrian Marius Deaconu & Delia Elena Spridon, 2024. "Fuzzy Multi-Objective, Multi-Period Integrated Routing–Scheduling Problem to Distribute Relief to Disaster Areas: A Hybrid Ant Colony Optimization Approach," Mathematics, MDPI, vol. 12(18), pages 1-17, September.
    12. Sharma, Mahak & Antony, Rose & Sehrawat, Rajat & Cruz, Angel Contreras & Daim, Tugrul U., 2022. "Exploring post-adoption behaviors of e-service users: Evidence from the hospitality sector /online travel services," Technology in Society, Elsevier, vol. 68(C).
    13. Esmaeilbeigi, Rasul & Mak-Hau, Vicky & Yearwood, John & Nguyen, Vivian, 2022. "The multiphase course timetabling problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1098-1119.
    14. Özgün Elçi & John Hooker, 2022. "Stochastic Planning and Scheduling with Logic-Based Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2428-2442, September.
    15. Maiyar, Lohithaksha M & Thakkar, Jitesh J, 2019. "Environmentally conscious logistics planning for food grain industry considering wastages employing multi objective hybrid particle swarm optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 220-248.
    16. Tuğba Yeğin & Muhammad Ikram, 2022. "Analysis of Consumers’ Electric Vehicle Purchase Intentions: An Expansion of the Theory of Planned Behavior," Sustainability, MDPI, vol. 14(19), pages 1-27, September.
    17. Di, Zhen & Yang, Lixing & Shi, Jungang & Zhou, Housheng & Yang, Kai & Gao, Ziyou, 2022. "Joint optimization of carriage arrangement and flow control in a metro-based underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 1-23.
    18. Meisam Nasrollahi & Jafar Razmi, 2021. "A mathematical model for designing an integrated pharmaceutical supply chain with maximum expected coverage under uncertainty," Operational Research, Springer, vol. 21(1), pages 525-552, March.
    19. Jun-bin Wang & Lufei Huang, 2021. "A Game-Theoretic Analytical Approach for Fostering Energy-Saving Innovation in the Electric Vehicle Supply Chain," SAGE Open, , vol. 11(2), pages 21582440211, June.
    20. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2472-:d:754786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.