IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v11y2024i1d10.1057_s41599-024-02988-5.html
   My bibliography  Save this article

An agent-based evolutionary system model of the transformation from building material industry (BMI) to green intelligent BMI under supply chain management

Author

Listed:
  • Shi Yin

    (Hebei Agricultural University
    Harbin Engineering University)

  • Yudan Zhao

    (Hebei Agricultural University)

Abstract

The building materials industry ranks first in terms of carbon emissions and energy consumption within the industrial sector. To achieve the goal of reducing carbon emissions, the development of the green intelligent building materials (GIBMs) industry has become a strategic priority and major demand for the country. Government support plays a vital role in promoting the growth of the GIBMs industry. This paper utilizes evolutionary game theory and Matlab software to analyze the impact of government regulations on the development of the GIBMs industry. The research findings indicate the following. i) Appropriate government control over building materials enterprises is beneficial for the advancement of the GIBMs industry. A balance is necessary, as both excessive control and weak control hinder the industry’s development. ii) Increased financial assistance from the government to enterprises producing GIBMs has a positive influence. This support enables building materials enterprises to overcome technical barriers, drive technological innovation, and encourage construction developers to actively purchase these materials. iii) Stronger government punishment for pollutant emissions by building materials enterprises serves as a catalyst for the production of GIBMs. Stricter penalties motivate these enterprises to adopt more environmentally friendly practices. iv) Moderate to strong government investment in infrastructure has a significant impact. It prompts construction developers to actively choose and purchase GIBMs. In response to government regulations and market demand, building materials enterprises are inclined to produce these environmentally friendly materials. This study emphasizes the importance of government regulations and support in promoting the growth of the GIBMs industry. By implementing appropriate control measures, providing financial assistance, imposing punishments for pollution, and investing in infrastructure, the government can effectively encourage the development of the GIBMs industry. These measures contribute to achieving the double carbon goals and fostering a more sustainable built environment.

Suggested Citation

  • Shi Yin & Yudan Zhao, 2024. "An agent-based evolutionary system model of the transformation from building material industry (BMI) to green intelligent BMI under supply chain management," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
  • Handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-02988-5
    DOI: 10.1057/s41599-024-02988-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-024-02988-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-024-02988-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zezhou Wu & Mingyang Jiang & Yuzhu Cai & Hao Wang & Shenghan Li, 2019. "What Hinders the Development of Green Building? An Investigation of China," IJERPH, MDPI, vol. 16(17), pages 1-18, August.
    2. Eunsoo Park & Younghyun Kim & Anyong Lee & Jieun Kim & Hyunseok Kong, 2023. "Study on the Global Sustainability of the Korean Construction Industry Based on the GRI Standards," IJERPH, MDPI, vol. 20(5), pages 1-22, February.
    3. Yinqi Zhang & He Wang & Weijun Gao & Fan Wang & Nan Zhou & Daniel M. Kammen & Xiaoyu Ying, 2019. "A Survey of the Status and Challenges of Green Building Development in Various Countries," Sustainability, MDPI, vol. 11(19), pages 1-29, September.
    4. Ying Zhang & Jian Kang & Hong Jin, 2018. "A Review of Green Building Development in China from the Perspective of Energy Saving," Energies, MDPI, vol. 11(2), pages 1-18, February.
    5. Ye Gao & Renfu Jia & Yi Yao & Jiahui Xu, 2022. "Evolutionary Game Theory and the Simulation of Green Building Development Based on Dynamic Government Subsidies," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    6. Yihong Wang & Da Chen & Pingye Tian, 2022. "Research on the Impact Path of the Sustainable Development of Green Buildings: Evidence from China," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    7. Yingmiao Qian & Xian-An Yu & Malin Song & Zhiyang Shen, 2023. "Complexity analysis and control of game behavior of subjects in green building materials supply chain considering technology subsidies," Post-Print hal-03974946, HAL.
    8. Xiaojuan Li & Chen Wang & Mukhtar A. Kassem & Yishu Liu & Kherun Nita Ali, 2022. "Study on Green Building Promotion Incentive Strategy Based on Evolutionary Game between Government and Construction Unit," Sustainability, MDPI, vol. 14(16), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    2. Sicheng Wang & Yuanyuan Guo & Hao Zhang & Mingming Gao, 2023. "A Life-Cycle Carbon Emissions Evaluation Model for Traditional Residential Houses: Applying to Traditional Dong Dwellings in Qandongnan, Guizhou Province, China," Sustainability, MDPI, vol. 15(18), pages 1-31, September.
    3. Suyang Xue & Jiaming Na & Libin Wang & Shuangjun Wang & Xiaoxiao Xu, 2023. "The Outlook of Green Building Development in China during the “Fourteenth Five-Year Plan” Period," IJERPH, MDPI, vol. 20(6), pages 1-22, March.
    4. Lavinia Denisia Cuc & Dana Rad & Daniel Manațe & Silviu Gabriel Szentesi & Anca Dicu & Mioara Florina Pantea & Vanina Adoriana Trifan & Cosmin Silviu Raul Joldeș & Graziella Corina Bâtcă-Dumitru, 2023. "Representations of the Smart Green Concept and the Intention to Implement IoT in Romanian Real Estate Development," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    5. Li, Qianwen & Qian, Tingyu & Wang, Jiaqi & Long, Ruyin & Chen, Hong & Sun, Chuanwang, 2023. "Social “win-win” promotion of green housing under the four-subject evolutionary game," Energy Economics, Elsevier, vol. 127(PA).
    6. Zhenmin Yuan & Jianliang Zhou & Yaning Qiao & Yadi Zhang & Dandan Liu & Hui Zhu, 2020. "BIM-VE-Based Optimization of Green Building Envelope from the Perspective of both Energy Saving and Life Cycle Cost," Sustainability, MDPI, vol. 12(19), pages 1-16, September.
    7. Zezhou Wu & Qiufeng He & Kaijie Yang & Jinming Zhang & Kexi Xu, 2020. "Investigating the Dynamics of China’s Green Building Policy Development from 1986 to 2019," IJERPH, MDPI, vol. 18(1), pages 1-19, December.
    8. Amal Shamseldin & Ashraf Balabel & Mamdooh Alwetaishi & Ahmed Abdelhafiz & Usama Issa & Ibrahim Sharaky & Mohamed Al-Surf & Mosleh Al-Harthi, 2020. "Adjustment of the Indoor Environmental Quality Assessment Field for Taif City-Saudi Arabia," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    9. Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.
    10. Shengdong Cheng & Xin Zhou & Huan Zhou, 2023. "Study on Carbon Emission Measurement in Building Materialization Stage," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
    11. Li, Qianwen & Qian, Tingyu & Zhang, Xufeng & Long, Ruyin & Chen, Hong & Huang, Han & Liu, Lei & Zhu, Licai & Jiang, Huikang & Zhu, Hanyi, 2023. "How does stakeholder loss aversion affect the promotion of green housing?," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 647-668.
    12. Di Li & Qianbin Di & Hailin Mu & Zenglin Han & Hongye Wang & Ye Duan, 2022. "Research on the Impact of Output Adjustment Strategy and Carbon Trading Policy on the Response, Stability and Complexity of Steel Market under the Dynamic Game," Sustainability, MDPI, vol. 14(19), pages 1-40, September.
    13. Danbei Mo & Liang Huang & Linghong Zeng, 2023. "Green Development Level Evaluation of Urban Engineering Construction in the Mid-Low Reaches of Yangtze River, China," Sustainability, MDPI, vol. 15(15), pages 1-19, July.
    14. Jiahui Xu & Renfu Jia & Buhan Wang & Anqi Xu & Xiaoxia Zhu, 2023. "The Optimal Emission Reduction and Recycling Strategies in Construction Material Supply Chain under Carbon Cap–Trade Mechanism," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    15. Wen Jiang & Yichao Hua & Meng Yuan & Igor Martek & Weiling Jiang, 2024. "Pricing Models under Three-Echelon Prefabricated Construction Supply Chains with Consumer Preferences," Sustainability, MDPI, vol. 16(2), pages 1-25, January.
    16. Dan Yu & Bart Dewancker & Fanyue Qian, 2020. "The Identification and Rebound Effect Evaluation of Equipment Energy Efficiency Improvement Policy: A Case Study on Japan’s Top Runner Policy," Energies, MDPI, vol. 13(17), pages 1-18, August.
    17. Huang, Xingyu & Zheng, Pengjun & Liu, Guiyun, 2024. "Non-cooperative and Nash-bargaining game of a two-parallel maritime supply chain considering government subsidy and forwarder's CSR strategy: A dynamic perspective," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    18. Ng, Wai Lam & Chin, Min Yee & Zhou, Jinqin & Woon, Kok Sin & Ching, Ann Ying, 2022. "The overlooked criteria in green building certification system: Embodied energy and thermal insulation on non-residential building with a case study in Malaysia," Energy, Elsevier, vol. 259(C).
    19. He, Q. & Tapia, F. & Reith, A., 2023. "Quantifying the influence of nature-based solutions on building cooling and heating energy demand: A climate specific review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    20. Jieli Hu & Tieli Wang, 2023. "Strategies of Participants in the Carbon Trading Market—An Analysis Based on the Evolutionary Game," Sustainability, MDPI, vol. 15(14), pages 1-24, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-02988-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.