IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v68y2017i1d10.1057_s41274-016-0004-7.html
   My bibliography  Save this article

Applying inverse DEA and cone constraint to sensitivity analysis of DMUs with undesirable inputs and outputs

Author

Listed:
  • M. Eyni

    (Payame Noor University)

  • G. Tohidi

    (Islamic Azad University, Central Tehran Branch)

  • S. Mehrabeian

    (Kharazmi University)

Abstract

In this paper, the inverse data envelopment analysis (DEA) with the preference of cone constraints will be discussed in a way that in the decision-making units, the undesirable inputs and outputs exist simultaneously. Supposing that the efficiency level does not change, if the unit under assessment increases the level of the desirable outputs and decreases the level of the undesirable outputs, how will it affect the amount of the desirable input level and the undesirable input level? To answer this question, the application of the inverse DEA with preference of cone constraints is suggested. The suggested approach, while maintaining the efficiency level, increases the level of its undesirable input and decreases the level of its desirable input by selection of strongly efficient solutions or some weakly efficient solutions of the multiple objective linear programming (MOLP) model. While maintaining the efficiency level, the suggested approach by selection of strongly efficient solution or some of the weakly efficient solutions of the MOLP model can increase the undesirable input level and decrease the desirable input level. Similarly, the suggested approach can be applied if the decision-making unit increases its undesirable input level and decreases the desirable input level so that the undesirable output level decreases and the desirable output level increases while maintaining the efficiency level. As an illustration, two numerical examples are rendered.

Suggested Citation

  • M. Eyni & G. Tohidi & S. Mehrabeian, 2017. "Applying inverse DEA and cone constraint to sensitivity analysis of DMUs with undesirable inputs and outputs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 34-40, January.
  • Handle: RePEc:pal:jorsoc:v:68:y:2017:i:1:d:10.1057_s41274-016-0004-7
    DOI: 10.1057/s41274-016-0004-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41274-016-0004-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41274-016-0004-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    2. Smith, P, 1990. "Data envelopment analysis applied to financial statements," Omega, Elsevier, vol. 18(2), pages 131-138.
    3. Wei, Quanling & Zhang, Jianzhong & Zhang, Xiangsun, 2000. "An inverse DEA model for inputs/outputs estimate," European Journal of Operational Research, Elsevier, vol. 121(1), pages 151-163, February.
    4. Yan, Hong & Wei, Quanling & Hao, Gang, 2002. "DEA models for resource reallocation and production input/output estimation," European Journal of Operational Research, Elsevier, vol. 136(1), pages 19-31, January.
    5. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moghaddas, Zohreh & Tosarkani, Babak Mohamadpour & Yousefi, Samuel, 2022. "Resource reallocation for improving sustainable supply chain performance: An inverse data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 252(C).
    2. Gholam R. Amin & Mustapha Ibn Boamah, 2020. "A new inverse DEA cost efficiency model for estimating potential merger gains: a case of Canadian banks," Annals of Operations Research, Springer, vol. 295(1), pages 21-36, December.
    3. Ghiyasi, Mojtaba & Soltanifar, Mehdi & Sharafi, Hamid, 2022. "A novel inverse DEA-R model with application in hospital efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    4. Xiaoyin Hu & Jianshu Li & Xiaoya Li & Jinchuan Cui, 2020. "A Revised Inverse Data Envelopment Analysis Model Based on Radial Models," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    5. Farzaneh Asadi & Sohrab Kordrostami & Alireza Amirteimoori & Morteza Bazrafshan, 2023. "Inverse data envelopment analysis without convexity: double frontiers," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 335-354, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Lin & Longzhong Yan & Ying-Ming Wang, 2019. "Performance Evaluation and Investment Analysis for Container Port Sustainable Development in China: An Inverse DEA Approach," Sustainability, MDPI, vol. 11(17), pages 1-13, August.
    2. Wen-Chi Yang & Wen-Min Lu, 2023. "Achieving Net Zero—An Illustration of Carbon Emissions Reduction with A New Meta-Inverse DEA Approach," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    3. Wai‐Peng Wong & Qiang Deng & Ming-Lang Tseng & Loo‐Hay Lee & Chee‐Wooi Hooy, 2014. "A Stochastic Setting To Bank Financial Performance For Refining Efficiency Estimates," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(4), pages 225-245, October.
    4. Samira Foladi & Maghsud Solimanpur & Mustafa Jahangoshai Rezaee, 2020. "Inverse Dynamic Data Envelopment Analysis for Evaluating Faculties of University with Quasi-Fixed Inputs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 148(1), pages 323-347, February.
    5. J V Guedes de Avellar & A Z Milioni & T N Rabello, 2007. "Spherical frontier DEA model based on a constant sum of inputs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(9), pages 1246-1251, September.
    6. Jun-Fei Chu & Jie Wu & Ma-Lin Song, 2018. "An SBM-DEA model with parallel computing design for environmental efficiency evaluation in the big data context: a transportation system application," Annals of Operations Research, Springer, vol. 270(1), pages 105-124, November.
    7. Meng Zhang & Jin-chuan Cui, 2016. "The extension and integration of the inverse DEA method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1212-1220, September.
    8. Lim, Dong-Joon, 2016. "Inverse DEA with frontier changes for new product target setting," European Journal of Operational Research, Elsevier, vol. 254(2), pages 510-516.
    9. Le, Minh Hanh & Afsharian, Mohsen & Ahn, Heinz, 2021. "Inverse Frontier-based Benchmarking for Investigating the Efficiency and Achieving the Targets in the Vietnamese Education System," Omega, Elsevier, vol. 103(C).
    10. Xiaoyin Hu & Jianshu Li & Xiaoya Li & Jinchuan Cui, 2020. "A Revised Inverse Data Envelopment Analysis Model Based on Radial Models," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    11. Zanella, Andreia & Camanho, Ana S. & Dias, Teresa G., 2015. "Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 245(2), pages 517-530.
    12. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    13. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    14. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    15. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    16. Suzuki, Soushi & Nijkamp, Peter, 2016. "An evaluation of energy-environment-economic efficiency for EU, APEC and ASEAN countries: Design of a Target-Oriented DFM model with fixed factors in Data Envelopment Analysis," Energy Policy, Elsevier, vol. 88(C), pages 100-112.
    17. Roberto Cervelló Royo & Fernando García García & Francisco Guijarro-Martínez & Ismael Moya-Clemente, 2011. "Housing Ranking: a model of equilibrium between buyers and sellers expectations," ERSA conference papers ersa11p314, European Regional Science Association.
    18. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    19. Jens Kjærsgaard & Niels Vestergaard & Kristiaan Kerstens, 2009. "Ecological Benchmarking to Explore Alternative Fishing Schemes to Protect Endangered Species by Substitution: The Danish Demersal Fishery in the North Sea," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(4), pages 573-590, August.
    20. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:68:y:2017:i:1:d:10.1057_s41274-016-0004-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.