IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i14p2405-d859067.html
   My bibliography  Save this article

A Multi-Start Biased-Randomized Algorithm for the Capacitated Dispersion Problem

Author

Listed:
  • Juan F. Gomez

    (Computer Science Department, Universitat Oberta de Catalunya, 08018 Barcelona, Spain)

  • Javier Panadero

    (Department of Management, Universitat Politècnica de Catalunya–BarcelonaTech, 08028 Barcelona, Spain)

  • Rafael D. Tordecilla

    (School of Engineering, Universidad de La Sabana, Chia 250001, Colombia)

  • Juliana Castaneda

    (Computer Science Department, Universitat Oberta de Catalunya, 08018 Barcelona, Spain)

  • Angel A. Juan

    (Department of Applied Statistics and Operations Research, Universitat Politècnica de València, 03801 Alcoy, Spain)

Abstract

The capacitated dispersion problem is a variant of the maximum diversity problem in which a set of elements in a network must be determined. These elements might represent, for instance, facilities in a logistics network or transmission devices in a telecommunication network. Usually, it is considered that each element is limited in its servicing capacity. Hence, given a set of possible locations, the capacitated dispersion problem consists of selecting a subset that maximizes the minimum distance between any pair of elements while reaching an aggregated servicing capacity. Since this servicing capacity is a highly usual constraint in real-world problems, the capacitated dispersion problem is often a more realistic approach than is the traditional maximum diversity problem. Given that the capacitated dispersion problem is an NP-hard problem, whenever large-sized instances are considered, we need to use heuristic-based algorithms to obtain high-quality solutions in reasonable computational times. Accordingly, this work proposes a multi-start biased-randomized algorithm to efficiently solve the capacitated dispersion problem. A series of computational experiments is conducted employing small-, medium-, and large-sized instances. Our results are compared with the best-known solutions reported in the literature, some of which have been proven to be optimal. Our proposed approach is proven to be highly competitive, as it achieves either optimal or near-optimal solutions and outperforms the non-optimal best-known solutions in many cases. Finally, a sensitive analysis considering different levels of the minimum aggregate capacity is performed as well to complete our study.

Suggested Citation

  • Juan F. Gomez & Javier Panadero & Rafael D. Tordecilla & Juliana Castaneda & Angel A. Juan, 2022. "A Multi-Start Biased-Randomized Algorithm for the Capacitated Dispersion Problem," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2405-:d:859067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/14/2405/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/14/2405/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duarte, Abraham & Marti, Rafael, 2007. "Tabu search and GRASP for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 178(1), pages 71-84, April.
    2. Eskandarpour, Majid & Dejax, Pierre & Miemczyk, Joe & Péton, Olivier, 2015. "Sustainable supply chain network design: An optimization-oriented review," Omega, Elsevier, vol. 54(C), pages 11-32.
    3. Lozano, M. & Molina, D. & GarcI´a-MartI´nez, C., 2011. "Iterated greedy for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 214(1), pages 31-38, October.
    4. Isabel Correia & Francisco Saldanha Gama, 2015. "Facility Location Under Uncertainty," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 177-203, Springer.
    5. Prokopyev, Oleg A. & Kong, Nan & Martinez-Torres, Dayna L., 2009. "The equitable dispersion problem," European Journal of Operational Research, Elsevier, vol. 197(1), pages 59-67, August.
    6. Daniel J. Rosenkrantz & Giri K. Tayi & S.S. Ravi, 2000. "Facility Dispersion Problems Under Capacity and Cost Constraints," Journal of Combinatorial Optimization, Springer, vol. 4(1), pages 7-33, March.
    7. Jesica Armas & Angel A. Juan & Joan M. Marquès & João Pedro Pedroso, 2017. "Solving the deterministic and stochastic uncapacitated facility location problem: from a heuristic to a simheuristic," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1161-1176, October.
    8. Erkut, Erhan & Neuman, Susan, 1989. "Analytical models for locating undesirable facilities," European Journal of Operational Research, Elsevier, vol. 40(3), pages 275-291, June.
    9. Oscar L Domínguez Rivero & Angel A Juan Pérez & Ignacio A de la Nuez Pestana & Djamila Ouelhadj, 2016. "An ILS-biased randomization algorithm for the two-dimensional loading HFVRP with sequential loading and items rotation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(1), pages 37-53, January.
    10. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    11. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    12. Elena Fernández & Mercedes Landete, 2015. "Fixed-Charge Facility Location Problems," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 47-77, Springer.
    13. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    14. Sayyady, Fatemeh & Fathi, Yahya, 2016. "An integer programming approach for solving the p-dispersion problem," European Journal of Operational Research, Elsevier, vol. 253(1), pages 216-225.
    15. R Aringhieri & R Cordone, 2011. "Comparing local search metaheuristics for the maximum diversity problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 266-280, February.
    16. Angel Juan & Javier Faulin & Albert Ferrer & Helena Lourenço & Barry Barrios, 2013. "MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 109-132, April.
    17. Wang, Yang & Wu, Qinghua & Glover, Fred, 2017. "Effective metaheuristic algorithms for the minimum differential dispersion problem," European Journal of Operational Research, Elsevier, vol. 258(3), pages 829-843.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martí, Rafael & Martínez-Gavara, Anna & Pérez-Peló, Sergio & Sánchez-Oro, Jesús, 2022. "A review on discrete diversity and dispersion maximization from an OR perspective," European Journal of Operational Research, Elsevier, vol. 299(3), pages 795-813.
    2. Juan F. Gomez & Anna Martínez-Gavara & Javier Panadero & Angel A. Juan & Rafael Martí, 2024. "A Forward–Backward Simheuristic for the Stochastic Capacitated Dispersion Problem," Mathematics, MDPI, vol. 12(6), pages 1-22, March.
    3. Aringhieri, Roberto & Cordone, Roberto & Grosso, Andrea, 2015. "Construction and improvement algorithms for dispersion problems," European Journal of Operational Research, Elsevier, vol. 242(1), pages 21-33.
    4. Parreño, Francisco & Álvarez-Valdés, Ramón & Martí, Rafael, 2021. "Measuring diversity. A review and an empirical analysis," European Journal of Operational Research, Elsevier, vol. 289(2), pages 515-532.
    5. Jiawei Song & Yang Wang & Haibo Wang & Qinghua Wu & Abraham P. Punnen, 2019. "An effective multi-wave algorithm for solving the max-mean dispersion problem," Journal of Heuristics, Springer, vol. 25(4), pages 731-752, October.
    6. Wu, Qinghua & Hao, Jin-Kao, 2013. "A hybrid metaheuristic method for the Maximum Diversity Problem," European Journal of Operational Research, Elsevier, vol. 231(2), pages 452-464.
    7. Conrado V. Plaza & Vanessa de A. Guimarães & Glaydston Ribeiro & Laura Bahiense, 2020. "Economic and environmental location of logistics integration centers: the Brazilian soybean transportation case," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 749-771, October.
    8. Anna Martínez-Gavara & Vicente Campos & Manuel Laguna & Rafael Martí, 2017. "Heuristic solution approaches for the maximum minsum dispersion problem," Journal of Global Optimization, Springer, vol. 67(3), pages 671-686, March.
    9. Xifeng Tang & Jiantao Wu & Rui Li, 2020. "Efficient Allocation of Customers to Facilities in the Multi-Objective Sustainable Location Problem," Sustainability, MDPI, vol. 12(18), pages 1-12, September.
    10. Lozano, M. & Molina, D. & GarcI´a-MartI´nez, C., 2011. "Iterated greedy for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 214(1), pages 31-38, October.
    11. Kınay, Ömer Burak & Saldanha-da-Gama, Francisco & Kara, Bahar Y., 2019. "On multi-criteria chance-constrained capacitated single-source discrete facility location problems," Omega, Elsevier, vol. 83(C), pages 107-122.
    12. Majid Eskandarpour & Pierre Dejax & Olivier Péton, 2019. "Multi-Directional Local Search for Sustainable Supply Chain Network Design," Post-Print hal-02407741, HAL.
    13. Junming Liu & Weiwei Chen & Jingyuan Yang & Hui Xiong & Can Chen, 2022. "Iterative Prediction-and-Optimization for E-Logistics Distribution Network Design," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 769-789, March.
    14. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    15. Varsei, Mohsen & Polyakovskiy, Sergey, 2017. "Sustainable supply chain network design: A case of the wine industry in Australia," Omega, Elsevier, vol. 66(PB), pages 236-247.
    16. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    17. Martins, C.L. & Melo, M.T. & Pato, M.V., 2019. "Redesigning a food bank supply chain network in a triple bottom line context," International Journal of Production Economics, Elsevier, vol. 214(C), pages 234-247.
    18. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.
    19. Martins, C. L. & Melo, Teresa & Pato, Margarida Vaz, 2016. "Redesigning a food bank supply chain network, Part I: Background and mathematical formulation," Technical Reports on Logistics of the Saarland Business School 10, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    20. Gilani, Hani & Sahebi, Hadi, 2022. "A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain," Omega, Elsevier, vol. 110(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2405-:d:859067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.