IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v62y2011i7d10.1057_jors.2010.30.html
   My bibliography  Save this article

Production planning with uncertainty in the quality of raw materials: a case in sawmills

Author

Listed:
  • M Kazemi Zanjani

    (Université Laval)

  • M Nourelfath

    (Université Laval)

  • D Ait-Kadi

    (Université Laval)

Abstract

Motivated by sawmill production planning, this paper investigates multi-period, multi-product (MPMP) production planning in a manufacturing environment with non-homogeneous raw materials, and consequently random process yields. A two-stage stochastic program with recourse is proposed to address the problem. The random yields are modelled as scenarios with stationary probability distributions during the planning horizon. The solution methodology is based on the sample average approximation (SAA) scheme. The stochastic sawmill production planning model is validated through the Monte Carlo simulation. The computational results for a real medium capacity sawmill highlight the significance of using the stochastic model as a viable tool for production planning instead of the mean-value deterministic model, which is a traditional production planning tool in many sawmills.

Suggested Citation

  • M Kazemi Zanjani & M Nourelfath & D Ait-Kadi, 2011. "Production planning with uncertainty in the quality of raw materials: a case in sawmills," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1334-1343, July.
  • Handle: RePEc:pal:jorsoc:v:62:y:2011:i:7:d:10.1057_jors.2010.30
    DOI: 10.1057/jors.2010.30
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2010.30
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2010.30?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Kall & János Mayer, 2005. "Stochastic Linear Programming," International Series in Operations Research and Management Science, Springer, number 978-0-387-24440-2, April.
    2. S Karabuk, 2008. "Production planning under uncertainty in textile manufacturing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(4), pages 510-520, April.
    3. S C H Leung & Y Wu & K K Lai, 2006. "A stochastic programming approach for multi-site aggregate production planning," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(2), pages 123-132, February.
    4. Akif Bakir, M. & Byrne, Mike D., 1998. "Stochastic linear optimisation of an MPMP production planning model," International Journal of Production Economics, Elsevier, vol. 55(1), pages 87-96, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Jamali & E. Khaleghi & I. Gholaminezhad & N. Nariman-Zadeh & B. Gholaminia & A. Jamal-Omidi, 2017. "Multi-objective genetic programming approach for robust modeling of complex manufacturing processes having probabilistic uncertainty in experimental data," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 149-163, January.
    2. Sanei Bajgiran, Omid & Kazemi Zanjani, Masoumeh & Nourelfath, Mustapha, 2016. "The value of integrated tactical planning optimization in the lumber supply chain," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 22-33.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazemi Zanjani, Masoumeh & Ait-Kadi, Daoud & Nourelfath, Mustapha, 2010. "Robust production planning in a manufacturing environment with random yield: A case in sawmill production planning," European Journal of Operational Research, Elsevier, vol. 201(3), pages 882-891, March.
    2. Mirzapour Al-e-hashem, S.M.J. & Malekly, H. & Aryanezhad, M.B., 2011. "A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty," International Journal of Production Economics, Elsevier, vol. 134(1), pages 28-42, November.
    3. Ekin, Tahir, 2018. "Integrated maintenance and production planning with endogenous uncertain yield," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 52-61.
    4. Dirk Lorenz & Marc Pfetsch & Andreas Tillmann, 2014. "An infeasible-point subgradient method using adaptive approximate projections," Computational Optimization and Applications, Springer, vol. 57(2), pages 271-306, March.
    5. Chia-Nan Wang & Nhat-Luong Nhieu & Trang Thi Thu Tran, 2021. "Stochastic Chebyshev Goal Programming Mixed Integer Linear Model for Sustainable Global Production Planning," Mathematics, MDPI, vol. 9(5), pages 1-22, February.
    6. Mr. Udaibir S Das & Miss Yinqiu Lu & Mr. Michael G. Papaioannou & Iva Petrova, 2012. "Sovereign Risk and Asset and Liability Management: Conceptual Issues," IMF Working Papers 2012/241, International Monetary Fund.
    7. Mohsen Zamani & Mahdi Abolghasemi & Seyed Mohammad Seyed Hosseini & Mir Saman Pishvaee, 2019. "Considering pricing and uncertainty in designing a reverse logistics network," Papers 1909.11633, arXiv.org.
    8. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    9. Peter Kall & János Mayer, 2006. "Some insights into the solution algorithms for SLP problems," Annals of Operations Research, Springer, vol. 142(1), pages 147-164, February.
    10. Caner TaskIn, Z. & Tamer Ünal, A., 2009. "Tactical level planning in float glass manufacturing with co-production, random yields and substitutable products," European Journal of Operational Research, Elsevier, vol. 199(1), pages 252-261, November.
    11. Beltran-Royo, C., 2017. "Two-stage stochastic mixed-integer linear programming: The conditional scenario approach," Omega, Elsevier, vol. 70(C), pages 31-42.
    12. Sun, Jing & Yamamoto, Hisashi & Matsui, Masayuki, 2020. "Horizontal integration management: An optimal switching model for parallel production system with multiple periods in smart supply chain environment," International Journal of Production Economics, Elsevier, vol. 221(C).
    13. Jensen, Hector A. & Maturana, Sergio, 2002. "A possibilistic decision support system for imprecise mathematical programming problems," International Journal of Production Economics, Elsevier, vol. 77(2), pages 145-158, May.
    14. Donya Rahmani & Arash Zandi & Sara Behdad & Arezou Entezaminia, 2021. "A light robust model for aggregate production planning with consideration of environmental impacts of machines," Operational Research, Springer, vol. 21(1), pages 273-297, March.
    15. K. Taghizadeh & M. Bagherpour & I. Mahdavi, 2011. "An interactive fuzzy goal programming approach for multi-period multi-product production planning problem," Fuzzy Information and Engineering, Springer, vol. 3(4), pages 393-410, December.
    16. Baldwin, Katherine L. & Foster, Ken & Jones, Keithly, 2011. "A stochastic approach to evaluating livestock marketing policy initiatives," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 6(2), pages 1-14, September.
    17. Nitish Umang & Michel Bierlaire & Alan L. Erera, 2017. "Real-time management of berth allocation with stochastic arrival and handling times," Journal of Scheduling, Springer, vol. 20(1), pages 67-83, February.
    18. Houssem Felfel & Wafa Ben Yahia & Omar Ayadi & Faouzi Masmoudi, 2018. "Stochastic multi-site supply chain planning in textile and apparel industry under demand and price uncertainties with risk aversion," Annals of Operations Research, Springer, vol. 271(2), pages 551-574, December.
    19. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    20. Shih-Pin Chen & Wen-Lung Huang, 2014. "Solving Fuzzy Multiproduct Aggregate Production Planning Problems Based on Extension Principle," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2014, pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:62:y:2011:i:7:d:10.1057_jors.2010.30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.