IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v62y2011i3d10.1057_jors.2010.189.html
   My bibliography  Save this article

Breadth of range and depth of stock: forecasting and inventory management at Euro Car Parts Ltd

Author

Listed:
  • F R Johnston

    (Euro Car Parts)

  • E A Shale

    (University of Warwick)

  • S Kapoor

    (Euro Car Parts)

  • R True

    (Euro Car Parts)

  • A Sheth

    (Euro Car Parts)

Abstract

This paper investigates inventory management issues in a distribution network. The study is motivated by examining the operation of a wholesaling car parts company. Customer service requirements are of paramount importance in this market sector. The nature of the demand facing the company is characterised. The breadth of range of stock keeping units (SKUs) held at a stocking location and the quantity of each SKU held are normally treated in isolation but in this case, the rule developed to select the range of SKU was extended to determine the level of stock to hold. It is intuitively obvious that these two factors should be linked, yet the authors have not found any other literature developing the connection in a practical context. Forecasting issues are explored as the rule on stock range depends on a forecast of the number of orders received for each SKU at each stocking unit. Some implementation issues and extensions are indicated.

Suggested Citation

  • F R Johnston & E A Shale & S Kapoor & R True & A Sheth, 2011. "Breadth of range and depth of stock: forecasting and inventory management at Euro Car Parts Ltd," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 433-441, March.
  • Handle: RePEc:pal:jorsoc:v:62:y:2011:i:3:d:10.1057_jors.2010.189
    DOI: 10.1057/jors.2010.189
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2010.189
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2010.189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kutanoglu, Erhan & Mahajan, Mohit, 2009. "An inventory sharing and allocation method for a multi-location service parts logistics network with time-based service levels," European Journal of Operational Research, Elsevier, vol. 194(3), pages 728-742, May.
    2. F R Johnston & J E Boylan & E A Shale, 2003. "An examination of the size of orders from customers, their characterisation and the implications for inventory control of slow moving items," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 833-837, August.
    3. Dominey, M. J. G. & Hill, R. M., 2004. "Performance of approximations for compound Poisson distributed demand in the newsboy problem," International Journal of Production Economics, Elsevier, vol. 92(2), pages 145-155, November.
    4. Syntetos, A. A. & Boylan, J. E., 2001. "On the bias of intermittent demand estimates," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 457-466, May.
    5. Paul Zipkin, 1991. "Evaluation of base‐stock policies in multiechelon inventory systems with compound‐poisson demands," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(3), pages 397-412, June.
    6. Matheus, Peter & Gelders, Ludo, 2000. "The (R, Q) inventory policy subject to a compound Poisson demand pattern," International Journal of Production Economics, Elsevier, vol. 68(3), pages 307-317, December.
    7. E A Shale & J E Boylan & F R Johnston, 2006. "Forecasting for intermittent demand: the estimation of an unbiased average," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(5), pages 588-592, May.
    8. Mantrala, Murali K. & Levy, Michael & Kahn, Barbara E. & Fox, Edward J. & Gaidarev, Peter & Dankworth, Bill & Shah, Denish, 2009. "Why is Assortment Planning so Difficult for Retailers? A Framework and Research Agenda," Journal of Retailing, Elsevier, vol. 85(1), pages 71-83.
    9. Syntetos, Aris A. & Boylan, John E., 2005. "The accuracy of intermittent demand estimates," International Journal of Forecasting, Elsevier, vol. 21(2), pages 303-314.
    10. Kennedy, W. J. & Wayne Patterson, J. & Fredendall, Lawrence D., 2002. "An overview of recent literature on spare parts inventories," International Journal of Production Economics, Elsevier, vol. 76(2), pages 201-215, March.
    11. Porras, Eric & Dekker, Rommert, 2008. "An inventory control system for spare parts at a refinery: An empirical comparison of different re-order point methods," European Journal of Operational Research, Elsevier, vol. 184(1), pages 101-132, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Sha & Dekker, Rommert & van Jaarsveld, Willem & Renjie, Rex Wang & Koning, Alex J., 2017. "An improved method for forecasting spare parts demand using extreme value theory," European Journal of Operational Research, Elsevier, vol. 261(1), pages 169-181.
    2. Wang, Wenbin & Syntetos, Aris A., 2011. "Spare parts demand: Linking forecasting to equipment maintenance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1194-1209.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Syntetos, Aris A. & Zied Babai, M. & Gardner, Everette S., 2015. "Forecasting intermittent inventory demands: simple parametric methods vs. bootstrapping," Journal of Business Research, Elsevier, vol. 68(8), pages 1746-1752.
    5. Teunter, Ruud H. & Syntetos, Aris A. & Zied Babai, M., 2011. "Intermittent demand: Linking forecasting to inventory obsolescence," European Journal of Operational Research, Elsevier, vol. 214(3), pages 606-615, November.
    6. Altay, Nezih & Litteral, Lewis A. & Rudisill, Frank, 2012. "Effects of correlation on intermittent demand forecasting and stock control," International Journal of Production Economics, Elsevier, vol. 135(1), pages 275-283.
    7. Pennings, Clint L.P. & van Dalen, Jan & van der Laan, Erwin A., 2017. "Exploiting elapsed time for managing intermittent demand for spare parts," European Journal of Operational Research, Elsevier, vol. 258(3), pages 958-969.
    8. G. Peter Zhang & Yusen Xia & Maohua Xie, 2024. "Intermittent demand forecasting with transformer neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 1051-1072, August.
    9. K Nikolopoulos & A A Syntetos & J E Boylan & F Petropoulos & V Assimakopoulos, 2011. "An aggregate–disaggregate intermittent demand approach (ADIDA) to forecasting: an empirical proposition and analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 544-554, March.
    10. Zhu, Sha & Jaarsveld, Willem van & Dekker, Rommert, 2020. "Spare parts inventory control based on maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    11. A A Syntetos & J E Boylan & S M Disney, 2009. "Forecasting for inventory planning: a 50-year review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 149-160, May.
    12. A A Syntetos & M Z Babai & Y Dallery & R Teunter, 2009. "Periodic control of intermittent demand items: theory and empirical analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(5), pages 611-618, May.
    13. Bacchetti, Andrea & Saccani, Nicola, 2012. "Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice," Omega, Elsevier, vol. 40(6), pages 722-737.
    14. Romeijnders, Ward & Teunter, Ruud & van Jaarsveld, Willem, 2012. "A two-step method for forecasting spare parts demand using information on component repairs," European Journal of Operational Research, Elsevier, vol. 220(2), pages 386-393.
    15. Pierre Dodin & Jingyi Xiao & Yossiri Adulyasak & Neda Etebari Alamdari & Lea Gauthier & Philippe Grangier & Paul Lemaitre & William L. Hamilton, 2023. "Bombardier Aftermarket Demand Forecast with Machine Learning," Interfaces, INFORMS, vol. 53(6), pages 425-445, November.
    16. Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
    17. Babai, M.Z. & Dallery, Y. & Boubaker, S. & Kalai, R., 2019. "A new method to forecast intermittent demand in the presence of inventory obsolescence," International Journal of Production Economics, Elsevier, vol. 209(C), pages 30-41.
    18. Schlaich, Tim & Hoberg, Kai, 2024. "When is the next order? Nowcasting channel inventories with Point-of-Sales data to predict the timing of retail orders," European Journal of Operational Research, Elsevier, vol. 315(1), pages 35-49.
    19. Van der Auweraer, Sarah & Boute, Robert N. & Syntetos, Aris A., 2019. "Forecasting spare part demand with installed base information: A review," International Journal of Forecasting, Elsevier, vol. 35(1), pages 181-196.
    20. Syntetos, Aris A. & Boylan, John E., 2010. "On the variance of intermittent demand estimates," International Journal of Production Economics, Elsevier, vol. 128(2), pages 546-555, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:62:y:2011:i:3:d:10.1057_jors.2010.189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.