IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v62y2011i1d10.1057_jors.2009.183.html
   My bibliography  Save this article

Kalman filtering as a performance monitoring technique for a propensity scorecard

Author

Listed:
  • K Bijak

    (University of Southampton
    Biuro Informacji Kredytowej S.A.)

Abstract

Propensity scorecards allow forecasting, which bank customers would like to be granted new credits in the near future, through assessing their willingness to apply for new loans. Kalman filtering can help to monitor scorecard performance. Data from successive months are used to update the baseline model. The updated scorecard is the output of the Kalman filter. There is no assumption concerning the scoring model specification and no specific estimation method is presupposed. Thus, the estimator covariance is derived from the bootstrap. The focus is on a relationship between the score and the natural logarithm of the odds for that score, which is used to determine a customer's propensity level. The propensity levels corresponding to the baseline and updated scores are compared. That comparison allows for monitoring whether the scorecard is still up-to-date in terms of assigning the odds. The presented technique is illustrated with an example of a propensity scorecard developed on the basis of credit bureau data.

Suggested Citation

  • K Bijak, 2011. "Kalman filtering as a performance monitoring technique for a propensity scorecard," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 29-37, January.
  • Handle: RePEc:pal:jorsoc:v:62:y:2011:i:1:d:10.1057_jors.2009.183
    DOI: 10.1057/jors.2009.183
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2009.183
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2009.183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J Whittaker & C Whitehead & M Somers, 2007. "A dynamic scorecard for monitoring baseline performance with application to tracking a mortgage portfolio," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(7), pages 911-921, July.
    2. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, September.
    3. Thomas, Lyn C. & Edelman, David B. & Crook, Jonathan, 2004. "Readings in Credit Scoring: Foundations, Developments, and Aims," OUP Catalogue, Oxford University Press, number 9780198527978.
    4. Thomas, Lyn C., 2009. "Consumer Credit Models: Pricing, Profit and Portfolios," OUP Catalogue, Oxford University Press, number 9780199232130.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J Whittaker & C Whitehead & M Somers, 2007. "A dynamic scorecard for monitoring baseline performance with application to tracking a mortgage portfolio," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(7), pages 911-921, July.
    2. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    3. Prilly Oktoviany & Robert Knobloch & Ralf Korn, 2021. "A machine learning-based price state prediction model for agricultural commodities using external factors," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1063-1085, December.
    4. Jonathan K. Budd & Peter G. Taylor, 2015. "Calculating optimal limits for transacting credit card customers," Papers 1506.05376, arXiv.org, revised Aug 2015.
    5. David Bolder & Shudan Liu, 2007. "Examining Simple Joint Macroeconomic and Term-Structure Models: A Practitioner's Perspective," Staff Working Papers 07-49, Bank of Canada.
    6. Yuo-Hsien Shiau & Su-Fen Yang & Rishan Adha & Syamsiyatul Muzayyanah, 2022. "Modeling Industrial Energy Demand in Relation to Subsector Manufacturing Output and Climate Change: Artificial Neural Network Insights," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    7. Clements, Kenneth W. & Fry, Renée, 2008. "Commodity currencies and currency commodities," Resources Policy, Elsevier, vol. 33(2), pages 55-73, June.
    8. Faust, Jon & Gupta, Abhishek, 2010. "Posterior Predictive Analysis for Evaluating DSGE Models," MPRA Paper 26721, University Library of Munich, Germany.
    9. Rutger-Jan Lange & Coen N. Teulings, 2021. "The option value of vacant land: Don't build when demand for housing is booming," Tinbergen Institute Discussion Papers 21-022/IV, Tinbergen Institute.
    10. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    11. Zirogiannis, Nikolaos & Tripodis, Yorghos, 2013. "A Generalized Dynamic Factor Model for Panel Data: Estimation with a Two-Cycle Conditional Expectation-Maximization Algorithm," Working Paper Series 142752, University of Massachusetts, Amherst, Department of Resource Economics.
    12. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    13. Moshe Buchinsky & Phillip Leslie, 2010. "Educational Attainment and the Changing U.S. Wage Structure: Dynamic Implications on Young Individuals' Choices," Journal of Labor Economics, University of Chicago Press, vol. 28(3), pages 541-594, July.
    14. S. Boragan Aruoba & Francis X. Diebold, 2010. "Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions," American Economic Review, American Economic Association, vol. 100(2), pages 20-24, May.
    15. Ippei Fujiwara & Koji Takahashi, 2012. "Asian Financial Linkage: Macro‐Finance Dissonance," Pacific Economic Review, Wiley Blackwell, vol. 17(1), pages 136-159, February.
    16. Christa N. Gibbs & Benedict Guttman-Kenney & Donghoon Lee & Scott Nelson & Wilbert Van der Klaauw & Jialan Wang, 2024. "Consumer Credit Reporting Data," Staff Reports 1114, Federal Reserve Bank of New York.
    17. Hongsheng Bi & Rubao Ji & Hui Liu & Young-Heon Jo & Jonathan A Hare, 2014. "Decadal Changes in Zooplankton of the Northeast U.S. Continental Shelf," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-12, January.
    18. Reema Gh. Alajmi, 2024. "Energy Consumption and Carbon Emissions: An Empirical Study of Saudi Arabia," Sustainability, MDPI, vol. 16(13), pages 1-16, June.
    19. Leif Anders Thorsrud, 2016. "Nowcasting using news topics Big Data versus big bank," Working Papers No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    20. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:62:y:2011:i:1:d:10.1057_jors.2009.183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.