IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v58y2007i7d10.1057_palgrave.jors.2602226.html
   My bibliography  Save this article

A dynamic scorecard for monitoring baseline performance with application to tracking a mortgage portfolio

Author

Listed:
  • J Whittaker

    (Lancaster University)

  • C Whitehead

    (Lancaster University)

  • M Somers

    (Scimetrics Ltd)

Abstract

A principled technique for monitoring the performance of a consumer credit scorecard through time is derived from Kalman filtering. Standard approaches sporadically compare certain characteristics of the new applicants with those predicted from the scorecard. The new approach systematically updates the scorecard combining new applicant information with the previous best estimate. The dynamically updated scorecard is tracked through time and compared to limits calculated by sequential simulation from the baseline scorecard. The observation equation of the Kalman filter is tailored to take the results of fitting local scorecards by logistic regression to batches of new clients that arrive in the current time interval. The states in the Kalman filter represent the true or underlying score for each attribute in the card: the parameters of the logistic regression. Their progress in time is modelled by a random walk and the filter provides the best estimate of the scores using past and present information. We illustrate the technique using a commercial mortgage portfolio and the results indicate significant emerging deficiencies in the baseline scorecard.

Suggested Citation

  • J Whittaker & C Whitehead & M Somers, 2007. "A dynamic scorecard for monitoring baseline performance with application to tracking a mortgage portfolio," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(7), pages 911-921, July.
  • Handle: RePEc:pal:jorsoc:v:58:y:2007:i:7:d:10.1057_palgrave.jors.2602226
    DOI: 10.1057/palgrave.jors.2602226
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602226
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J Banasik & J Crook & L Thomas, 2001. "Scoring by usage," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(9), pages 997-1006, September.
    2. H G Li & D J Hand, 2002. "Direct versus indirect credit scoring classifications," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(6), pages 647-654, June.
    3. J Banasik & J Crook & L Thomas, 2003. "Sample selection bias in credit scoring models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 822-832, August.
    4. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737.
    5. J Banasik & J N Crook & L C Thomas, 1999. "Not if but when will borrowers default," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(12), pages 1185-1190, December.
    6. Thomas, Lyn C. & Edelman, David B. & Crook, Jonathan, 2004. "Readings in Credit Scoring: Foundations, Developments, and Aims," OUP Catalogue, Oxford University Press, number 9780198527978.
    7. L C Thomas & J Banasik & J N Crook, 2001. "Recalibrating scorecards," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(9), pages 981-988, September.
    8. H Zhu & P A Beling & G A Overstreet, 2002. "A Bayesian framework for the combination of classifier outputs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(7), pages 719-727, July.
    9. Mari, Carlo & Reno, Roberto, 2005. "Credit risk analysis of mortgage loans: An application to the Italian market," European Journal of Operational Research, Elsevier, vol. 163(1), pages 83-93, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T H Moon & S Y Sohn, 2010. "Technology credit scoring model considering both SME characteristics and economic conditions: The Korean case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 666-675, April.
    2. K Bijak, 2011. "Kalman filtering as a performance monitoring technique for a propensity scorecard," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 29-37, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L C Thomas, 2010. "Consumer finance: challenges for operational research," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 41-52, January.
    2. J Banasik & J Crook, 2010. "Reject inference in survival analysis by augmentation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 473-485, March.
    3. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    4. Thi Mai Luong, 2020. "Selection Effects of Lender and Borrower Choices on Risk Measurement, Management and Prudential Regulation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2020, January-A.
    5. K Bijak, 2011. "Kalman filtering as a performance monitoring technique for a propensity scorecard," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 29-37, January.
    6. S M Finlay, 2006. "Predictive models of expenditure and over-indebtedness for assessing the affordability of new consumer credit applications," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 655-669, June.
    7. Finlay, Steven, 2011. "Multiple classifier architectures and their application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 210(2), pages 368-378, April.
    8. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    9. Prilly Oktoviany & Robert Knobloch & Ralf Korn, 2021. "A machine learning-based price state prediction model for agricultural commodities using external factors," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1063-1085, December.
    10. Jonathan K. Budd & Peter G. Taylor, 2015. "Calculating optimal limits for transacting credit card customers," Papers 1506.05376, arXiv.org, revised Aug 2015.
    11. David Bolder & Shudan Liu, 2007. "Examining Simple Joint Macroeconomic and Term-Structure Models: A Practitioner's Perspective," Staff Working Papers 07-49, Bank of Canada.
    12. Yuo-Hsien Shiau & Su-Fen Yang & Rishan Adha & Syamsiyatul Muzayyanah, 2022. "Modeling Industrial Energy Demand in Relation to Subsector Manufacturing Output and Climate Change: Artificial Neural Network Insights," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    13. Clements, Kenneth W. & Fry, Renée, 2008. "Commodity currencies and currency commodities," Resources Policy, Elsevier, vol. 33(2), pages 55-73, June.
    14. Faust, Jon & Gupta, Abhishek, 2010. "Posterior Predictive Analysis for Evaluating DSGE Models," MPRA Paper 26721, University Library of Munich, Germany.
    15. Rutger-Jan Lange & Coen N. Teulings, 2021. "The option value of vacant land: Don't build when demand for housing is booming," Tinbergen Institute Discussion Papers 21-022/IV, Tinbergen Institute.
    16. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    17. Zirogiannis, Nikolaos & Tripodis, Yorghos, 2013. "A Generalized Dynamic Factor Model for Panel Data: Estimation with a Two-Cycle Conditional Expectation-Maximization Algorithm," Working Paper Series 142752, University of Massachusetts, Amherst, Department of Resource Economics.
    18. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    19. Moshe Buchinsky & Phillip Leslie, 2010. "Educational Attainment and the Changing U.S. Wage Structure: Dynamic Implications on Young Individuals' Choices," Journal of Labor Economics, University of Chicago Press, vol. 28(3), pages 541-594, July.
    20. S. Boragan Aruoba & Francis X. Diebold, 2010. "Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions," American Economic Review, American Economic Association, vol. 100(2), pages 20-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:58:y:2007:i:7:d:10.1057_palgrave.jors.2602226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.