IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v55y2004i2d10.1057_palgrave.jors.2601703.html
   My bibliography  Save this article

A demonstration of the utility of fractional experimental design for finding optimal genetic algorithm parameter settings

Author

Listed:
  • D J Stewardson

    (University of Newcastle)

  • R I Whitfield

    (University of Strathclyde)

Abstract

This paper demonstrates that the use of sparse experimental design in the development of the structure for genetic algorithms, and hence other computer programs, is a particularly effective and efficient strategy. Despite widespread knowledge of the existence of these systematic experimental plans, they have seen limited application in the investigation of advanced computer programs. This paper attempts to address this missed opportunity and encourage others to take advantage of the power of these plans. Using data generated from a full factorial experimental design, involving 27 experimental runs that was used to assess the optimum operating settings of the parameters of a special genetic algorithm (GA), we show that similar results could have been obtained using as few as nine runs. The GA was used to find minimum cost schedules for a complex component assembly operation with many sub-processes.

Suggested Citation

  • D J Stewardson & R I Whitfield, 2004. "A demonstration of the utility of fractional experimental design for finding optimal genetic algorithm parameter settings," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 132-138, February.
  • Handle: RePEc:pal:jorsoc:v:55:y:2004:i:2:d:10.1057_palgrave.jors.2601703
    DOI: 10.1057/palgrave.jors.2601703
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601703
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dave Stewardson & David Porter & Tony Kelly, 2001. "The dangers posed by saddle points, and other problems, when using central composite designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(3-4), pages 485-495.
    2. Pongcharoen, P. & Hicks, C. & Braiden, P. M., 2004. "The development of genetic algorithms for the finite capacity scheduling of complex products, with multiple levels of product structure," European Journal of Operational Research, Elsevier, vol. 152(1), pages 215-225, January.
    3. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier Carpintero & Jennifer Villa-Dominguez & María José Tavera-Quiroz & Humberto Carlos Tavera-Quiroz & Bartosz Kaźmierczak & Jonathan Fábregas-Villegas & Fausto A. Canales, 2022. "Application of a 2 k–p Fractional Experimental Design in Coagulation-Flocculation Processes in the Treatment of Wastewater from a Slaughterhouse," Sustainability, MDPI, vol. 14(16), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenda Zhang & Jason J. Sauppe & Sheldon H. Jacobson, 2021. "An Improved Branch-and-Bound Algorithm for the One-Machine Scheduling Problem with Delayed Precedence Constraints," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1091-1102, July.
    2. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    3. S. David Wu & Eui-Seok Byeon & Robert H. Storer, 1999. "A Graph-Theoretic Decomposition of the Job Shop Scheduling Problem to Achieve Scheduling Robustness," Operations Research, INFORMS, vol. 47(1), pages 113-124, February.
    4. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    5. Meloni, Carlo & Pranzo, Marco & Samà, Marcella, 2022. "Evaluation of VaR and CVaR for the makespan in interval valued blocking job shops," International Journal of Production Economics, Elsevier, vol. 247(C).
    6. Buscher, Udo & Shen, Liji, 2009. "An integrated tabu search algorithm for the lot streaming problem in job shops," European Journal of Operational Research, Elsevier, vol. 199(2), pages 385-399, December.
    7. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    8. Ramalhinho Lourenco, Helena, 1996. "Sevast'yanov's algorithm for the flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 176-189, May.
    9. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    10. Bierwirth, C. & Kuhpfahl, J., 2017. "Extended GRASP for the job shop scheduling problem with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 261(3), pages 835-848.
    11. Ansis Ozolins, 2020. "Bounded dynamic programming algorithm for the job shop problem with sequence dependent setup times," Operational Research, Springer, vol. 20(3), pages 1701-1728, September.
    12. Steinhofel, K. & Albrecht, A. & Wong, C. K., 1999. "Two simulated annealing-based heuristics for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 118(3), pages 524-548, November.
    13. Taudes, Alfred & Trcka, Michael & Lukanowicz, Martin, 2002. "Organizational learning in production networks," Journal of Economic Behavior & Organization, Elsevier, vol. 47(2), pages 141-163, February.
    14. Edzard Weber & Anselm Tiefenbacher & Norbert Gronau, 2019. "Need for Standardization and Systematization of Test Data for Job-Shop Scheduling," Data, MDPI, vol. 4(1), pages 1-21, February.
    15. Liaw, Ching-Fang, 2000. "A hybrid genetic algorithm for the open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 124(1), pages 28-42, July.
    16. Selcuk Goren & Ihsan Sabuncuoglu & Utku Koc, 2012. "Optimization of schedule stability and efficiency under processing time variability and random machine breakdowns in a job shop environment," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(1), pages 26-38, February.
    17. Vitayasak, Srisatja & Pongcharoen, Pupong & Hicks, Chris, 2017. "A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm," International Journal of Production Economics, Elsevier, vol. 190(C), pages 146-157.
    18. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    19. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    20. Egon Balas & Giuseppe Lancia & Paolo Serafini & Alkiviadis Vazacopoulos, 1998. "Job Shop Scheduling With Deadlines," Journal of Combinatorial Optimization, Springer, vol. 1(4), pages 329-353, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:55:y:2004:i:2:d:10.1057_palgrave.jors.2601703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.