IDEAS home Printed from https://ideas.repec.org/a/pal/jorapm/v23y2024i4d10.1057_s41272-023-00459-1.html
   My bibliography  Save this article

Reinforcement learning for freight booking control problems

Author

Listed:
  • Justin Dumouchelle

    (University of Toronto)

  • Emma Frejinger

    (DIRO (FAS), Université de Montréal)

  • Andrea Lodi

    (Jacobs Technion-Cornell Institute, Cornell Tech and Technion - IIT)

Abstract

Booking control focuses on the problem of deciding whether to accept or reject bookings to maximize revenue while considering limited capacity. For freight applications, computing the cost of fulfilling requests requires solving an operational decision-making problem which often corresponds to a mixed-integer linear program. We propose a two-phase learning-based approach that first learns to predict the objective of the operational problem, then leverages the prediction within reinforcement learning algorithms to compute the policies. The method is general and applies to different problems faced in practice. We show strong performance on two booking control problems in the literature: distributional logistics and airline cargo management.

Suggested Citation

  • Justin Dumouchelle & Emma Frejinger & Andrea Lodi, 2024. "Reinforcement learning for freight booking control problems," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(4), pages 318-345, August.
  • Handle: RePEc:pal:jorapm:v:23:y:2024:i:4:d:10.1057_s41272-023-00459-1
    DOI: 10.1057/s41272-023-00459-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41272-023-00459-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41272-023-00459-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christiane Barz & Daniel Gartner, 2016. "Air Cargo Network Revenue Management," Transportation Science, INFORMS, vol. 50(4), pages 1206-1222, November.
    2. Alexander Kastius & Rainer Schlosser, 2022. "Dynamic pricing under competition using reinforcement learning," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(1), pages 50-63, February.
    3. Rana, Rupal & Oliveira, Fernando S., 2014. "Real-time dynamic pricing in a non-stationary environment using model-free reinforcement learning," Omega, Elsevier, vol. 47(C), pages 116-126.
    4. Abhijit Gosavi, 2009. "Reinforcement Learning: A Tutorial Survey and Recent Advances," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 178-192, May.
    5. Eric Larsen & Sébastien Lachapelle & Yoshua Bengio & Emma Frejinger & Simon Lacoste-Julien & Andrea Lodi, 2022. "Predicting Tactical Solutions to Operational Planning Problems Under Imperfect Information," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 227-242, January.
    6. Kasilingam, R. G., 1997. "Air cargo revenue management: Characteristics and complexities," European Journal of Operational Research, Elsevier, vol. 96(1), pages 36-44, January.
    7. Daniel Adelman, 2007. "Dynamic Bid Prices in Revenue Management," Operations Research, INFORMS, vol. 55(4), pages 647-661, August.
    8. Yuri Levin & Mikhail Nediak & Huseyin Topaloglu, 2012. "Cargo Capacity Management with Allotments and Spot Market Demand," Operations Research, INFORMS, vol. 60(2), pages 351-365, April.
    9. Kannapha Amaruchkul & William L. Cooper & Diwakar Gupta, 2007. "Single-Leg Air-Cargo Revenue Management," Transportation Science, INFORMS, vol. 41(4), pages 457-469, November.
    10. Dimitris Bertsimas & Ioana Popescu, 2003. "Revenue Management in a Dynamic Network Environment," Transportation Science, INFORMS, vol. 37(3), pages 257-277, August.
    11. Nicolas Bondoux & Anh Quan Nguyen & Thomas Fiig & Rodrigo Acuna-Agost, 2020. "Reinforcement learning applied to airline revenue management," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(5), pages 332-348, October.
    12. Tatsiana Levina & Yuri Levin & Jeff McGill & Mikhail Nediak, 2011. "Network Cargo Capacity Management," Operations Research, INFORMS, vol. 59(4), pages 1008-1023, August.
    13. Brandt, Felix & Nickel, Stefan, 2019. "The air cargo load planning problem - a consolidated problem definition and literature review on related problems," European Journal of Operational Research, Elsevier, vol. 275(2), pages 399-410.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ian Yeoman, 2024. "Travel and transport," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(4), pages 281-282, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klein, Robert & Koch, Sebastian & Steinhardt, Claudius & Strauss, Arne K., 2020. "A review of revenue management: Recent generalizations and advances in industry applications," European Journal of Operational Research, Elsevier, vol. 284(2), pages 397-412.
    2. Moussawi-Haidar, Lama & Nasr, Walid & Jalloul, Maya, 2021. "Standardized cargo network revenue management with dual channels under stochastic and time-dependent demand," European Journal of Operational Research, Elsevier, vol. 295(1), pages 275-291.
    3. Bo Feng & Zheyu Jiang & Fujun Lai, 2020. "Robust approach for air cargo freight forwarder selection under disruption," Annals of Operations Research, Springer, vol. 291(1), pages 339-360, August.
    4. Wu, You & Lange, Anne & Mantin, Benny, 2022. "Who benefits from air service agreements? The case of international air cargo operations," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 281-303.
    5. Masato Wada & Felipe Delgado & Bernardo K. Pagnoncelli, 2017. "A risk averse approach to the capacity allocation problem in the airline cargo industry," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 643-651, June.
    6. Lin, Danping & Lee, Carman Ka Man & Yang, Jilin, 2017. "Air cargo revenue management under buy-back policy," Journal of Air Transport Management, Elsevier, vol. 61(C), pages 53-63.
    7. Delgado, Felipe & Sirhan, Cristóbal & Katscher, Mathias & Larrain, Homero, 2020. "Recovering from demand disruptions on an air cargo network," Journal of Air Transport Management, Elsevier, vol. 85(C).
    8. Shaban, I.A. & Wang, Z.X. & Chan, F.T.S. & Chung, S.H. & Eltoukhy, A.E.E. & Qu, T., 2019. "Price setting for extra-baggage service for a combination carrier using the newsvendor setup," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 1-14.
    9. Bo Feng & Jixin Zhao & Zheyu Jiang, 2022. "Robust pricing for airlines with partial information," Annals of Operations Research, Springer, vol. 310(1), pages 49-87, March.
    10. Tatsiana Levina & Yuri Levin & Jeff McGill & Mikhail Nediak, 2011. "Network Cargo Capacity Management," Operations Research, INFORMS, vol. 59(4), pages 1008-1023, August.
    11. Yuri Levin & Mikhail Nediak & Huseyin Topaloglu, 2012. "Cargo Capacity Management with Allotments and Spot Market Demand," Operations Research, INFORMS, vol. 60(2), pages 351-365, April.
    12. Delgado, Felipe & Trincado, Ricardo & Pagnoncelli, Bernardo K., 2019. "A multistage stochastic programming model for the network air cargo allocation under capacity uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 292-307.
    13. Thomas W. M. Vossen & Dan Zhang, 2015. "Reductions of Approximate Linear Programs for Network Revenue Management," Operations Research, INFORMS, vol. 63(6), pages 1352-1371, December.
    14. Chevalier, Philippe & Lamas, Alejandro & Lu, Liang & Mlinar, Tanja, 2015. "Revenue management for operations with urgent orders," European Journal of Operational Research, Elsevier, vol. 240(2), pages 476-487.
    15. Yuhang Ma & Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "An Approximation Algorithm for Network Revenue Management Under Nonstationary Arrivals," Operations Research, INFORMS, vol. 68(3), pages 834-855, May.
    16. Eric Larsen & Sébastien Lachapelle & Yoshua Bengio & Emma Frejinger & Simon Lacoste-Julien & Andrea Lodi, 2022. "Predicting Tactical Solutions to Operational Planning Problems Under Imperfect Information," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 227-242, January.
    17. Georgia Perakis & Guillaume Roels, 2010. "Robust Controls for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 12(1), pages 56-76, November.
    18. L. F. Escudero & J. F. Monge & D. Romero Morales & J. Wang, 2013. "Expected Future Value Decomposition Based Bid Price Generation for Large-Scale Network Revenue Management," Transportation Science, INFORMS, vol. 47(2), pages 181-197, May.
    19. Mika Sumida & Huseyin Topaloglu, 2019. "An Approximation Algorithm for Capacity Allocation Over a Single Flight Leg with Fare-Locking," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 83-99, February.
    20. Chen, Jing & Wang, Jian & Bell, Peter C., 2014. "Lease expiration management for a single lease term in the apartment industry," European Journal of Operational Research, Elsevier, vol. 238(1), pages 233-244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorapm:v:23:y:2024:i:4:d:10.1057_s41272-023-00459-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.