IDEAS home Printed from https://ideas.repec.org/a/pal/assmgt/v18y2017i7d10.1057_s41260-017-0055-6.html
   My bibliography  Save this article

The Black–Litterman model: active risk targeting and the parameter tau

Author

Listed:
  • Randy O’Toole

    (Federated Investors)

Abstract

There is apparent persistent confusion over certain aspects of Black–Litterman expected returns, with a number of publications offering various explanations, clarifications, and criticisms as to how the model works in practice. The parameter tau (τ) has proved to be a particularly confounding feature of the model: A wide range of opinions and suggestions on how to interpret and quantify tau has accumulated in the literature and includes some harsh condemnation of Black–Litterman specifically related to tau. This article presents a simple interpretation of tau, shows that it is directly related to the level of active risk implicit in the Black–Litterman model, and is easily calibrated so that Black–Litterman expected returns produce portfolios with targeted levels of active risk. The main contribution is an alternative derivation of Black–Litterman that affords a direct way to target active risk without requiring a specific value for tau. This derivation reveals that portfolio construction using Black–Litterman is equivalent to creating a mean-variance optimal portfolio of active strategies that is then overlaid onto a benchmark portfolio, and by targeting active risk directly, users of the Black–Litterman model do not need to consider tau at all.

Suggested Citation

  • Randy O’Toole, 2017. "The Black–Litterman model: active risk targeting and the parameter tau," Journal of Asset Management, Palgrave Macmillan, vol. 18(7), pages 580-587, December.
  • Handle: RePEc:pal:assmgt:v:18:y:2017:i:7:d:10.1057_s41260-017-0055-6
    DOI: 10.1057/s41260-017-0055-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41260-017-0055-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41260-017-0055-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erindi Allaj, 2013. "The Black–Litterman model: a consistent estimation of the parameter tau," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 27(2), pages 217-251, June.
    2. S Satchell & A Scowcroft, 2000. "A demystification of the Black–Litterman model: Managing quantitative and traditional portfolio construction," Journal of Asset Management, Palgrave Macmillan, vol. 1(2), pages 138-150, September.
    3. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    2. Frieder Meyer-Bullerdiek, 2021. "Out-of-sample performance of the Black-Litterman model," Journal of Finance and Investment Analysis, SCIENPRESS Ltd, vol. 10(2), pages 1-2.
    3. Erindi Allaj, 2013. "The Black–Litterman model: a consistent estimation of the parameter tau," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 27(2), pages 217-251, June.
    4. Davide Benedetti & Enrico Biffis & Fotis Chatzimichalakis & Luciano Lilloy Fedele & Ian Simm, 2021. "Climate change investment risk: optimal portfolio construction ahead of the transition to a lower-carbon economy," Annals of Operations Research, Springer, vol. 299(1), pages 847-871, April.
    5. Benjamin Hippert & André Uhde & Sascha Tobias Wengerek, 2019. "Portfolio benefits of adding corporate credit default swap indices: evidence from North America and Europe," Review of Derivatives Research, Springer, vol. 22(2), pages 203-259, July.
    6. Patrick Bielstein, 2018. "International asset allocation using the market implied cost of capital," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 32(1), pages 17-51, February.
    7. Erindi Allaj, 2020. "The Black–Litterman model and views from a reverse optimization procedure: an out-of-sample performance evaluation," Computational Management Science, Springer, vol. 17(3), pages 465-492, October.
    8. Ghaemi Asl, Mahdi & Rashidi, Muhammad Mahdi & Tavakkoli, Hamid Raza & Rezgui, Hichem, 2024. "Does Islamic investing modify portfolio performance? Time-varying optimization strategies for conventional and Shariah energy-ESG-utilities portfolio," The Quarterly Review of Economics and Finance, Elsevier, vol. 94(C), pages 37-57.
    9. Zhang, Zhichao & Chau, Frankie & Xie, Li, 2012. "Strategic Asset Allocation for Central Bank’s Management of Foreign Reserves: A new approach," MPRA Paper 43654, University Library of Munich, Germany.
    10. Zura Kakushadze, 2014. "Mean-Reversion and Optimization," Papers 1408.2217, arXiv.org, revised Feb 2016.
    11. Platanakis, Emmanouil & Urquhart, Andrew, 2020. "Should investors include Bitcoin in their portfolios? A portfolio theory approach," The British Accounting Review, Elsevier, vol. 52(4).
    12. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    13. Alessandro Cardinali, 2012. "An Out-of-sample Analysis of Mean-Variance Portfolios with Orthogonal GARCH Factors," International Econometric Review (IER), Econometric Research Association, vol. 4(1), pages 1-16, April.
    14. Peng W. He & Andrew Grant & Joel Fabre, 2013. "Economic value of analyst recommendations in Australia: an application of the Black–Litterman asset allocation model," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 53(2), pages 441-470, June.
    15. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    16. Bodnar Taras & Schmid Wolfgang, 2011. "On the exact distribution of the estimated expected utility portfolio weights: Theory and applications," Statistics & Risk Modeling, De Gruyter, vol. 28(4), pages 319-342, December.
    17. Li, Tianyuan & Chen, Ping, 2024. "Asset allocation combining macro and micro information–Empirical test based on entropy pool model," Finance Research Letters, Elsevier, vol. 64(C).
    18. Chang, C-L. & McAleer, M.J. & Wong, W.-K., 2015. "Informatics, Data Mining, Econometrics and Financial Economics: A Connection," Econometric Institute Research Papers EI2015-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Yi Huang & Wei Zhu & Duan Li & Shushang Zhu & Shikun Wang, 2023. "Integrating Different Informations for Portfolio Selection," Papers 2305.17881, arXiv.org.
    20. Wei Shi & Scott H. Irwin, 2005. "Optimal Hedging with a Subjective View: An Empirical Bayesian Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 918-930.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:assmgt:v:18:y:2017:i:7:d:10.1057_s41260-017-0055-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.