IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v8y2009i1p71-86.html
   My bibliography  Save this article

Una combinación de un algoritmo voraz con algoritmos genéticos para optimizar la producción de cartón ondulado = A Combination of a Greedy Algorithm and Genetics Algorithms to Optimize the Production of Corrugated Board

Author

Listed:
  • Tornadijo Rodríguez, Tomás F.

    (Departamento de Informática. Cartonajes Vir, S.A.)

Abstract

En este trabajo se propone la utilización de un algoritmo genético para la optimización del corte continuo de planchas de cartón, un problema habitual en la industria cartonera, donde la minimización de mermas de materia prima y el cumplimiento de los plazos de fabricación son dos objetivos prioritarios de la planificación de la producción. Las soluciones aportadas por un algoritmo voraz se utilizan como semillas para el algoritmo genético. Se utiliza el operador de recombinación de cruce en un punto. In this paper, we suggest a genetic algorithm for optimizing the continuous cutting of cardboard plates, a common problem in the corrugated industry, where minimizing wastage of raw materials and meeting production deadlines are two priority objectives of production planning. The solutions provided by a greedy algorithm are used as seeds for the genetic algorithm. It uses the one-point crossover operator.

Suggested Citation

  • Tornadijo Rodríguez, Tomás F., 2009. "Una combinación de un algoritmo voraz con algoritmos genéticos para optimizar la producción de cartón ondulado = A Combination of a Greedy Algorithm and Genetics Algorithms to Optimize the Production ," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 8(1), pages 71-86, December.
  • Handle: RePEc:pab:rmcpee:v:8:y:2009:i:1:p:71-86
    as

    Download full text from publisher

    File URL: http://www.upo.es/RevMetCuant/art32.pdf
    Download Restriction: no

    File URL: http://www.upo.es/RevMetCuant/art32.txt
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    2. Bortfeldt, Andreas, 2006. "A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces," European Journal of Operational Research, Elsevier, vol. 172(3), pages 814-837, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gardeyn, Jeroen & Wauters, Tony, 2022. "A goal-driven ruin and recreate heuristic for the 2D variable-sized bin packing problem with guillotine constraints," European Journal of Operational Research, Elsevier, vol. 301(2), pages 432-444.
    2. Kaizhi Chen & Jiahao Zhuang & Shangping Zhong & Song Zheng, 2020. "Optimization Method for Guillotine Packing of Rectangular Items within an Irregular and Defective Slate," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    3. Ortmann, Frank G. & Ntene, Nthabiseng & van Vuuren, Jan H., 2010. "New and improved level heuristics for the rectangular strip packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 203(2), pages 306-315, June.
    4. Leung, Stephen C.H. & Zhang, Defu & Sim, Kwang Mong, 2011. "A two-stage intelligent search algorithm for the two-dimensional strip packing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 57-69, November.
    5. Defu Zhang & Yuxin Che & Furong Ye & Yain-Whar Si & Stephen C. H. Leung, 2016. "A hybrid algorithm based on variable neighbourhood for the strip packing problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 513-530, August.
    6. Defu Zhang & Lijun Wei & Stephen C. H. Leung & Qingshan Chen, 2013. "A Binary Search Heuristic Algorithm Based on Randomized Local Search for the Rectangular Strip-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 332-345, May.
    7. Sławomir Bąk & Jacek Błażewicz & Grzegorz Pawlak & Maciej Płaza & Edmund K. Burke & Graham Kendall, 2011. "A Parallel Branch-and-Bound Approach to the Rectangular Guillotine Strip Cutting Problem," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 15-25, February.
    8. Kenmochi, Mitsutoshi & Imamichi, Takashi & Nonobe, Koji & Yagiura, Mutsunori & Nagamochi, Hiroshi, 2009. "Exact algorithms for the two-dimensional strip packing problem with and without rotations," European Journal of Operational Research, Elsevier, vol. 198(1), pages 73-83, October.
    9. Francisco Trespalacios & Ignacio E. Grossmann, 2017. "Symmetry breaking for generalized disjunctive programming formulation of the strip packing problem," Annals of Operations Research, Springer, vol. 258(2), pages 747-759, November.
    10. Andrzej Kozik, 2017. "Handling precedence constraints in scheduling problems by the sequence pair representation," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 445-472, February.
    11. Anshu Ranjan & Pramod Khargonekar & Sartaj Sahni, 2017. "Offline first-fit decreasing height scheduling of power loads," Journal of Scheduling, Springer, vol. 20(5), pages 527-542, October.
    12. Akang Wang & Christopher L. Hanselman & Chrysanthos E. Gounaris, 2018. "A customized branch-and-bound approach for irregular shape nesting," Journal of Global Optimization, Springer, vol. 71(4), pages 935-955, August.
    13. Russo, Mauro & Sforza, Antonio & Sterle, Claudio, 2013. "An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 451-462.
    14. Bayliss, Christopher & Currie, Christine S.M. & Bennell, Julia A. & Martinez-Sykora, Antonio, 2021. "Queue-constrained packing: A vehicle ferry case study," European Journal of Operational Research, Elsevier, vol. 289(2), pages 727-741.
    15. López-Camacho, Eunice & Terashima-Marín, Hugo & Ochoa, Gabriela & Conant-Pablos, Santiago Enrique, 2013. "Understanding the structure of bin packing problems through principal component analysis," International Journal of Production Economics, Elsevier, vol. 145(2), pages 488-499.
    16. Marco Antonio Boschetti & Lorenza Montaletti, 2010. "An Exact Algorithm for the Two-Dimensional Strip-Packing Problem," Operations Research, INFORMS, vol. 58(6), pages 1774-1791, December.
    17. W. D. D. Madhavee & N. Saldin & U. C. Vaidyarathna & C. J. Jayawardene, 2018. "A Practical Application of the Generalized Cutting Stock Algorithm," Academic Journal of Applied Mathematical Sciences, Academic Research Publishing Group, vol. 4(3), pages 15-21, 03-2018.
    18. A Ghanmi & R H A D Shaw, 2008. "Modelling and analysis of Canadian Forces strategic lift and pre-positioning options," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(12), pages 1591-1602, December.
    19. Reinaldo Morabito & Vitória Pureza, 2010. "A heuristic approach based on dynamic programming and and/or-graph search for the constrained two-dimensional guillotine cutting problem," Annals of Operations Research, Springer, vol. 179(1), pages 297-315, September.
    20. Andrea Lodi & Silvano Martello & Michele Monaci & Claudio Cicconetti & Luciano Lenzini & Enzo Mingozzi & Carl Eklund & Jani Moilanen, 2011. "Efficient Two-Dimensional Packing Algorithms for Mobile WiMAX," Management Science, INFORMS, vol. 57(12), pages 2130-2144, December.

    More about this item

    Keywords

    industria cartonera; cajas de cartón; algoritmos genéticos; SPP-CP; corrugator manufacturing; cardboard boxes; genetic algorithms; SPP-CP;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • L23 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Organization of Production

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:8:y:2009:i:1:p:71-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.