IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v301y2022i2p432-444.html
   My bibliography  Save this article

A goal-driven ruin and recreate heuristic for the 2D variable-sized bin packing problem with guillotine constraints

Author

Listed:
  • Gardeyn, Jeroen
  • Wauters, Tony

Abstract

This paper addresses the two-dimensional bin packing problem with guillotine constraints. The problem requires a set of rectangular items to be cut from larger rectangles, known as bins, while only making use of edge-to-edge (guillotine) cuts. The goal is to minimize the total bin area needed to cut all required items. This paper also addresses variants of the problem which permit 90∘ rotation of items and/or a heterogeneous set of bins. A novel heuristic is introduced which is based on the ruin and recreate paradigm combined with a goal-driven approach. When applying the proposed heuristic to benchmark instances from the literature, it outperforms the current state-of-the-art algorithms in terms of solution quality for all variants of the problem considered.

Suggested Citation

  • Gardeyn, Jeroen & Wauters, Tony, 2022. "A goal-driven ruin and recreate heuristic for the 2D variable-sized bin packing problem with guillotine constraints," European Journal of Operational Research, Elsevier, vol. 301(2), pages 432-444.
  • Handle: RePEc:eee:ejores:v:301:y:2022:i:2:p:432-444
    DOI: 10.1016/j.ejor.2021.11.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721009826
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.11.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. François Clautiaux & Antoine Jouglet & Aziz Moukrim, 2013. "A New Graph-Theoretical Model for the Guillotine-Cutting Problem," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 72-86, February.
    2. Jan Christiaens & Greet Vanden Berghe, 2020. "Slack Induction by String Removals for Vehicle Routing Problems," Transportation Science, INFORMS, vol. 54(2), pages 417-433, March.
    3. Ortmann, Frank G. & Ntene, Nthabiseng & van Vuuren, Jan H., 2010. "New and improved level heuristics for the rectangular strip packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 203(2), pages 306-315, June.
    4. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    5. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2013. "A goal-driven approach to the 2D bin packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 224(1), pages 110-121.
    6. Yi-Ping Cui & Yi Yao & Defu Zhang, 2018. "Applying triple-block patterns in solving the two-dimensional bin packing problem," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(3), pages 402-415, March.
    7. Andrea Lodi & Silvano Martello & Daniele Vigo, 1999. "Heuristic and Metaheuristic Approaches for a Class of Two-Dimensional Bin Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 11(4), pages 345-357, November.
    8. Polyakovsky, Sergey & M'Hallah, Rym, 2009. "An agent-based approach to the two-dimensional guillotine bin packing problem," European Journal of Operational Research, Elsevier, vol. 192(3), pages 767-781, February.
    9. Dyckhoff, Harald, 1990. "A typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 44(2), pages 145-159, January.
    10. Hong, Shaohui & Zhang, Defu & Lau, Hoong Chuin & Zeng, XiangXiang & Si, Yain-Whar, 2014. "A hybrid heuristic algorithm for the 2D variable-sized bin packing problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 95-103.
    11. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    12. Bortfeldt, Andreas, 2006. "A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces," European Journal of Operational Research, Elsevier, vol. 172(3), pages 814-837, August.
    13. Cui, Yi-Ping & Cui, Yaodong & Tang, Tianbing, 2015. "Sequential heuristic for the two-dimensional bin-packing problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 43-53.
    14. Coffman, E. G. & Shor, P. W., 1990. "Average-case analysis of cutting and packing in two dimensions," European Journal of Operational Research, Elsevier, vol. 44(2), pages 134-144, January.
    15. P. C. Gilmore & R. E. Gomory, 1965. "Multistage Cutting Stock Problems of Two and More Dimensions," Operations Research, INFORMS, vol. 13(1), pages 94-120, February.
    16. Silvano Martello & Michele Monaci & Daniele Vigo, 2003. "An Exact Approach to the Strip-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 15(3), pages 310-319, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Chang & Smith-Miles, Kate & Wauters, Tony & Costa, Alysson M., 2024. "Instance space analysis for 2D bin packing mathematical models," European Journal of Operational Research, Elsevier, vol. 315(2), pages 484-498.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortmann, Frank G. & Ntene, Nthabiseng & van Vuuren, Jan H., 2010. "New and improved level heuristics for the rectangular strip packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 203(2), pages 306-315, June.
    2. Hong, Shaohui & Zhang, Defu & Lau, Hoong Chuin & Zeng, XiangXiang & Si, Yain-Whar, 2014. "A hybrid heuristic algorithm for the 2D variable-sized bin packing problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 95-103.
    3. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    4. Leung, Stephen C.H. & Zhang, Defu & Sim, Kwang Mong, 2011. "A two-stage intelligent search algorithm for the two-dimensional strip packing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 57-69, November.
    5. Yi-Ping Cui & Yongwu Zhou & Yaodong Cui, 2017. "Triple-solution approach for the strip packing problem with two-staged patterns," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 588-604, August.
    6. Mateus Martin & Horacio Hideki Yanasse & Maristela O. Santos & Reinaldo Morabito, 2024. "Models for two-dimensional bin packing problems with customer order spread," Journal of Combinatorial Optimization, Springer, vol. 48(1), pages 1-27, August.
    7. Önder Aşık & Ender Özcan, 2009. "Bidirectional best-fit heuristic for orthogonal rectangular strip packing," Annals of Operations Research, Springer, vol. 172(1), pages 405-427, November.
    8. Andreas Bortfeldt & Sabine Jungmann, 2012. "A tree search algorithm for solving the multi-dimensional strip packing problem with guillotine cutting constraint," Annals of Operations Research, Springer, vol. 196(1), pages 53-71, July.
    9. Defu Zhang & Lijun Wei & Stephen C. H. Leung & Qingshan Chen, 2013. "A Binary Search Heuristic Algorithm Based on Randomized Local Search for the Rectangular Strip-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 332-345, May.
    10. Polyakovskiy, Sergey & M’Hallah, Rym, 2022. "A lookahead matheuristic for the unweighed variable-sized two-dimensional bin packing problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 104-117.
    11. Sławomir Bąk & Jacek Błażewicz & Grzegorz Pawlak & Maciej Płaza & Edmund K. Burke & Graham Kendall, 2011. "A Parallel Branch-and-Bound Approach to the Rectangular Guillotine Strip Cutting Problem," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 15-25, February.
    12. Francisco Trespalacios & Ignacio E. Grossmann, 2017. "Symmetry breaking for generalized disjunctive programming formulation of the strip packing problem," Annals of Operations Research, Springer, vol. 258(2), pages 747-759, November.
    13. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.
    14. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    15. Hadj Salem, Khadija & Silva, Elsa & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "Mathematical models for the two-dimensional variable-sized cutting stock problem in the home textile industry," European Journal of Operational Research, Elsevier, vol. 306(2), pages 549-566.
    16. Nestor M Cid-Garcia & Yasmin A Rios-Solis, 2020. "Positions and covering: A two-stage methodology to obtain optimal solutions for the 2d-bin packing problem," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-22, April.
    17. Kaizhi Chen & Jiahao Zhuang & Shangping Zhong & Song Zheng, 2020. "Optimization Method for Guillotine Packing of Rectangular Items within an Irregular and Defective Slate," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    18. Song, X. & Chu, C.B. & Nie, Y.Y. & Bennell, J.A., 2006. "An iterative sequential heuristic procedure to a real-life 1.5-dimensional cutting stock problem," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1870-1889, December.
    19. Hu, Qian & Lim, Andrew & Zhu, Wenbin, 2015. "The two-dimensional vector packing problem with piecewise linear cost function," Omega, Elsevier, vol. 50(C), pages 43-53.
    20. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2013. "A goal-driven approach to the 2D bin packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 224(1), pages 110-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:301:y:2022:i:2:p:432-444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.