IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v32y2016i2d10.1007_s10878-016-0036-6.html
   My bibliography  Save this article

A hybrid algorithm based on variable neighbourhood for the strip packing problem

Author

Listed:
  • Defu Zhang

    (Xiamen University)

  • Yuxin Che

    (Xiamen University)

  • Furong Ye

    (Xiamen University)

  • Yain-Whar Si

    (University of Macau)

  • Stephen C. H. Leung

    (The University of Hong Kong)

Abstract

This paper addresses the strip packing problem, which has a wide range of real-world applications. Our proposed algorithm is a hybrid metaheuristic that combines an improved heuristic algorithm with a variable neighbourhood search. Different neighbourhoods are constructed based on the concept of block patterns. The proposed algorithm has three interesting features. First, a least-waste strategy is used to improve the constructive heuristics. Second, a better sorting sequence is selected to generate an initial solution. Finally, different neighbourhoods are constructed based on block patterns. The computational results from a diverse set of problem instances show that the proposed algorithm performs better than algorithms reported in the literature for most of the problem sets compared.

Suggested Citation

  • Defu Zhang & Yuxin Che & Furong Ye & Yain-Whar Si & Stephen C. H. Leung, 2016. "A hybrid algorithm based on variable neighbourhood for the strip packing problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 513-530, August.
  • Handle: RePEc:spr:jcomop:v:32:y:2016:i:2:d:10.1007_s10878-016-0036-6
    DOI: 10.1007/s10878-016-0036-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-016-0036-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-016-0036-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    2. Edmund K. Burke & Graham Kendall & Glenn Whitwell, 2009. "A Simulated Annealing Enhancement of the Best-Fit Heuristic for the Orthogonal Stock-Cutting Problem," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 505-516, August.
    3. Defu Zhang & Lijun Wei & Stephen C. H. Leung & Qingshan Chen, 2013. "A Binary Search Heuristic Algorithm Based on Randomized Local Search for the Rectangular Strip-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 332-345, May.
    4. He, Kun & Ji, Pengli & Li, Chumin, 2015. "Dynamic reduction heuristics for the rectangle packing area minimization problem," European Journal of Operational Research, Elsevier, vol. 241(3), pages 674-685.
    5. Oliveira, Jose Fernando & Wascher, Gerhard, 2007. "Cutting and Packing," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1106-1108, December.
    6. Bortfeldt, Andreas, 2006. "A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces," European Journal of Operational Research, Elsevier, vol. 172(3), pages 814-837, August.
    7. Leung, Stephen C.H. & Zhang, Defu & Sim, Kwang Mong, 2011. "A two-stage intelligent search algorithm for the two-dimensional strip packing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 57-69, November.
    8. J. E. Beasley, 1985. "An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure," Operations Research, INFORMS, vol. 33(1), pages 49-64, February.
    9. Silvano Martello & Daniele Vigo, 1998. "Exact Solution of the Two-Dimensional Finite Bin Packing Problem," Management Science, INFORMS, vol. 44(3), pages 388-399, March.
    10. Silvano Martello & Michele Monaci & Daniele Vigo, 2003. "An Exact Approach to the Strip-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 15(3), pages 310-319, August.
    11. G Belov & G Scheithauer & E A Mukhacheva, 2008. "One-dimensional heuristics adapted for two-dimensional rectangular strip packing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(6), pages 823-832, June.
    12. Hopper, E. & Turton, B. C. H., 2001. "An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem," European Journal of Operational Research, Elsevier, vol. 128(1), pages 34-57, January.
    13. Duanbing Chen & Wenqi Huang, 2007. "A New Heuristic Algorithm For Constrained Rectangle-Packing Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(04), pages 463-478.
    14. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    15. Dowsland, Kathryn A. & Herbert, Edward A. & Kendall, Graham & Burke, Edmund, 2006. "Using tree search bounds to enhance a genetic algorithm approach to two rectangle packing problems," European Journal of Operational Research, Elsevier, vol. 168(2), pages 390-402, January.
    16. E. K. Burke & G. Kendall & G. Whitwell, 2004. "A New Placement Heuristic for the Orthogonal Stock-Cutting Problem," Operations Research, INFORMS, vol. 52(4), pages 655-671, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leung, Stephen C.H. & Zhang, Defu & Sim, Kwang Mong, 2011. "A two-stage intelligent search algorithm for the two-dimensional strip packing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 57-69, November.
    2. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2011. "A skyline heuristic for the 2D rectangular packing and strip packing problems," European Journal of Operational Research, Elsevier, vol. 215(2), pages 337-346, December.
    3. Defu Zhang & Lijun Wei & Stephen C. H. Leung & Qingshan Chen, 2013. "A Binary Search Heuristic Algorithm Based on Randomized Local Search for the Rectangular Strip-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 332-345, May.
    4. Rosephine G. Rakotonirainy & Jan H. Vuuren, 2021. "The effect of benchmark data characteristics during empirical strip packing heuristic performance evaluation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 467-495, June.
    5. Lei Wang & Aihua Yin, 2016. "A quasi-human algorithm for the two dimensional rectangular strip packing problem: in memory of Prof. Wenqi Huang," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 416-444, August.
    6. Önder Aşık & Ender Özcan, 2009. "Bidirectional best-fit heuristic for orthogonal rectangular strip packing," Annals of Operations Research, Springer, vol. 172(1), pages 405-427, November.
    7. Marco Antonio Boschetti & Lorenza Montaletti, 2010. "An Exact Algorithm for the Two-Dimensional Strip-Packing Problem," Operations Research, INFORMS, vol. 58(6), pages 1774-1791, December.
    8. Wei, Lijun & Hu, Qian & Lim, Andrew & Liu, Qiang, 2018. "A best-fit branch-and-bound heuristic for the unconstrained two-dimensional non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 270(2), pages 448-474.
    9. Andreas Bortfeldt & Sabine Jungmann, 2012. "A tree search algorithm for solving the multi-dimensional strip packing problem with guillotine cutting constraint," Annals of Operations Research, Springer, vol. 196(1), pages 53-71, July.
    10. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    11. Ortmann, Frank G. & Ntene, Nthabiseng & van Vuuren, Jan H., 2010. "New and improved level heuristics for the rectangular strip packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 203(2), pages 306-315, June.
    12. Krzysztof Fleszar, 2016. "An Exact Algorithm for the Two-Dimensional Stage-Unrestricted Guillotine Cutting/Packing Decision Problem," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 703-720, November.
    13. Kenmochi, Mitsutoshi & Imamichi, Takashi & Nonobe, Koji & Yagiura, Mutsunori & Nagamochi, Hiroshi, 2009. "Exact algorithms for the two-dimensional strip packing problem with and without rotations," European Journal of Operational Research, Elsevier, vol. 198(1), pages 73-83, October.
    14. Stéphane Grandcolas & Cyril Pain-Barre, 2022. "A hybrid metaheuristic for the two-dimensional strip packing problem," Annals of Operations Research, Springer, vol. 309(1), pages 79-102, February.
    15. Bennell, Julia A. & Soon Lee, Lai & Potts, Chris N., 2013. "A genetic algorithm for two-dimensional bin packing with due dates," International Journal of Production Economics, Elsevier, vol. 145(2), pages 547-560.
    16. Wei, Lijun & Zhu, Wenbin & Lim, Andrew & Liu, Qiang & Chen, Xin, 2018. "An adaptive selection approach for the 2D rectangle packing area minimization problem," Omega, Elsevier, vol. 80(C), pages 22-30.
    17. Sławomir Bąk & Jacek Błażewicz & Grzegorz Pawlak & Maciej Płaza & Edmund K. Burke & Graham Kendall, 2011. "A Parallel Branch-and-Bound Approach to the Rectangular Guillotine Strip Cutting Problem," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 15-25, February.
    18. Reinaldo Morabito & Vitória Pureza, 2010. "A heuristic approach based on dynamic programming and and/or-graph search for the constrained two-dimensional guillotine cutting problem," Annals of Operations Research, Springer, vol. 179(1), pages 297-315, September.
    19. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    20. Wei, Lijun & Tian, Tian & Zhu, Wenbin & Lim, Andrew, 2014. "A block-based layer building approach for the 2D guillotine strip packing problem," European Journal of Operational Research, Elsevier, vol. 239(1), pages 58-69.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:32:y:2016:i:2:d:10.1007_s10878-016-0036-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.