IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v8y2009i1p29-49.html
   My bibliography  Save this article

A Decision Making Method for Educational Management Based on Distance Measures = Toma de decisiones en procesos de gestión de la educación basados en las medidas de distancia

Author

Listed:
  • Merigó Lindahl, José M.

    (Departamento de Economía y Organización de Empresas. Universidad de Barcelona)

  • López-Jurado, María Pilar

    (Departamento de Economía y Organización de Empresas. Universidad de Barcelona)

  • Gracia Ramos, María Carmen

    (Departamento de Economía y Organización de Empresas. Universidad de Barcelona)

Abstract

We develop a new approach for decision making in educational management based on the use of distance measures. We focus on the selection of a studies plan from the perspective of an academic institution. We try to develop this approach showing the benefits of establishing an ideal plan that we compare with the available alternatives. We use the Minkowski distance, the ordered weighted averaging (OWA) operator and the interval numbers. The use of the Minkowski distance allows to make comparisons between the ideal plan and the available ones in the market. The OWA operator is an aggregation operator that provides a parameterized family of aggregation operators that includes the maximum, the minimum and the average criteria, among others. And the interval numbers is a very useful technique to represent the information when the environment is very complex, because it gives all the possible results from the minimum to the maximum. We introduce a new aggregation operator called the uncertain generalized ordered weighted averaging distance (UGOWAD) operator. It is a distance aggregation operator that uses the main characteristics of the Minkowski distance, the OWA operator and the interval numbers. We develop an illustrative example where we can see the usefulness of the UGOWAD operator to select a studies plan in education management. The main advantage of using the UGOWAD is that we can consider a wide range of distance aggregation methods in the decision problem. Then, the decision maker gets a more complete view of the decision problem, being able to select the alternative that better fits the interests. Se desarrolla un nuevo modelo para la toma de decisiones en procesos de gestión de la educación basados en las medidas de distancia. El análisis se enfoca en analizar un proceso de selección de plan de estudios desde la perspectiva de una institución académica. Se intenta mostrar la practicidad de utilizar un plan de estudios imaginario que sería el ideal a partir del cual se compararían las diferentes alternativas disponibles. Para realizar esto, se utilizarán diferentes técnicas disponibles en Teoría de la Decisión, como son la distancia de Minkowski, el operador de medias ponderadas (OWA) y los intervalos de confianza. La utilización de la distancia de Minkowski nos permite hacer comparaciones entre un plan de estudios ideal y los disponibles en la realidad. El operador OWA es un operador de agregación que proporciona una familia parametrizada de operadores de agregación entre los cuales se destaca el máximo, el mínimo y la media aritmética. Los intervalos de confianza son de gran utilidad para representar la información cuando el entorno es muy complejo, porque proporciona todos los resultados que se podrían producir desde un mínimo hasta un máximo. Por eso, incluye todos los posibles resultados que se pueden producir. Para realizar esto, se introduce un nuevo operador de agregación denominado como el operador de distancia media ponderada ordenada generalizada incierta (UGOWAD o UMOWAD). Es un operador de agregación de distancias que utiliza las principales características de la distancia de Minkowski, del operador OWA y de los intervalos de confianza. Se desarrolla un ejemplo ilustrativo en donde se puede ver la utilidad del operador UGOWAD para la selección de un plan de estudios en la gestión de la educación. La principal ventaja de utilizar el operador UGOWAD está en poder considerar una amplia gama de operadores de agregación de distancias en el problema decisional. Entonces, el decisor obtiene una visión mucho más completa del problema y está capacitado para seleccionar la alternativa que se acerca más a sus intereses.

Suggested Citation

  • Merigó Lindahl, José M. & López-Jurado, María Pilar & Gracia Ramos, María Carmen, 2009. "A Decision Making Method for Educational Management Based on Distance Measures = Toma de decisiones en procesos de gestión de la educación basados en las medidas de distancia," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 8(1), pages 29-49, December.
  • Handle: RePEc:pab:rmcpee:v:8:y:2009:i:1:p:29-49
    as

    Download full text from publisher

    File URL: http://www.upo.es/RevMetCuant/art30.pdf
    Download Restriction: no

    File URL: http://www.upo.es/RevMetCuant/art30.txt
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Canós, L. & Liern, V., 2008. "Soft computing-based aggregation methods for human resource management," European Journal of Operational Research, Elsevier, vol. 189(3), pages 669-681, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tom Pape, 2020. "Prioritising data items for business analytics: Framework and application to human resources," Papers 2012.13813, arXiv.org.
    2. Pablo A. Pinto-DelaCadena & Vicente Liern & Andrea Vinueza-Cabezas, 2024. "A Comparative Analysis of Multi-Criteria Decision Methods for Personnel Selection: A Practical Approach," Mathematics, MDPI, vol. 12(2), pages 1-18, January.
    3. Merigó, José M. & Casanovas, Montserrat & Yang, Jian-Bo, 2014. "Group decision making with expertons and uncertain generalized probabilistic weighted aggregation operators," European Journal of Operational Research, Elsevier, vol. 235(1), pages 215-224.
    4. Merigó, José M. & Palacios-Marqués, Daniel & Zeng, Shouzhen, 2016. "Subjective and objective information in linguistic multi-criteria group decision making," European Journal of Operational Research, Elsevier, vol. 248(2), pages 522-531.
    5. Merigó Lindahl, José M. & Casanovas Ramón, Montserrat, 2010. "The Generalized Hybrid Averaging Operator and its Application in Decision Making = La media generalizada híbrida y su aplicación en la toma de decisiones," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 9(1), pages 69-84, June.
    6. V. Liern & B. Pérez-Gladish, 2022. "Multiple criteria ranking method based on functional proximity index: un-weighted TOPSIS," Annals of Operations Research, Springer, vol. 311(2), pages 1099-1121, April.
    7. Gao, Jianwei & Li, Ming & Liu, Huihui, 2015. "Generalized ordered weighted utility averaging-hyperbolic absolute risk aversion operators and their applications to group decision-making," European Journal of Operational Research, Elsevier, vol. 243(1), pages 258-270.
    8. Abderrahmen Mediouni & Nicolas Zufferey & Nachiappan Subramanian & Naoufel Cheikhrouhou, 2019. "Fit between humanitarian professionals and project requirements: hybrid group decision procedure to reduce uncertainty in decision-making," Annals of Operations Research, Springer, vol. 283(1), pages 471-496, December.
    9. Tomasz Korol & Anestis Fotiadis, 2016. "Applying Fuzzy Logic of Expert Knowledge for Accurate Predictive Algorithms of Customer Traffic Flows in Theme Parks," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1451-1468, November.
    10. Blanco-Mesa, Fabio & León-Castro, Ernesto & Acosta-Sandoval, Alejandra, 2020. "Toma de Decisiones Estratégicas en Entornos Inciertos || Strategic Decision-Making in Uncertain Environments," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 30(1), pages 79-96, December.
    11. M. Lazim & M. Abu Osman, 2009. "A New Malaysian Quality of Life Index Based on Fuzzy Sets and Hierarchical Needs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 94(3), pages 499-508, December.
    12. Ahn, Byeong Seok, 2011. "Compatible weighting method with rank order centroid: Maximum entropy ordered weighted averaging approach," European Journal of Operational Research, Elsevier, vol. 212(3), pages 552-559, August.
    13. Maria Teresa Lamata & Vicente Liern & Blanca Pérez-Gladish, 2018. "Doing good by doing well: a MCDM framework for evaluating corporate social responsibility attractiveness," Annals of Operations Research, Springer, vol. 267(1), pages 249-266, August.

    More about this item

    Keywords

    decision making; selection of studies plan; uncertainty; Minkowski distance; aggregation operators; toma de decisiones; selección de plan de estudios; incertidumbre; distancia de Minkowski; operadores de agregación;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • D89 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:8:y:2009:i:1:p:29-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.