IDEAS home Printed from https://ideas.repec.org/a/oup/restud/v88y2021i3p1031-1073..html
   My bibliography  Save this article

On the Iterated Estimation of Dynamic Discrete Choice Games
[Pseudo maximum likelihood estimation of structural models involving fixed-point problems]

Author

Listed:
  • Federico A Bugni
  • Jackson Bunting

Abstract

We study the first-order asymptotic properties of a class of estimators of the structural parameters in dynamic discrete choice games. We consider -stage policy iteration (PI) estimators, wheredenotes the number of PIs employed in the estimation. This class nests several estimators proposed in the literature. By considering a “pseudo likelihood” criterion function, our estimator becomes the -pseudo maximum likelihood (PML) estimator in Aguirregabiria and Mira (2002, 2007). By considering a “minimum distance” criterion function, it defines a new -minimum distance (MD) estimator, which is an iterative version of the estimators in Pesendorfer and Schmidt-Dengler (2008) and Pakes et al. (2007). First, we establish that the -PML estimator is consistent and asymptotically normal for any . This complements findings in Aguirregabiria and Mira (2007), who focus onandlarge enough to induce convergence of the estimator. Furthermore, we show under certain conditions that the asymptotic variance of the -PML estimator can exhibit arbitrary patterns as a function of . Second, we establish that the -MD estimator is consistent and asymptotically normal for any . For a specific weight matrix, the -MD estimator has the same asymptotic distribution as the -PML estimator. Our main result provides an optimal sequence of weight matrices for the -MD estimator and shows that the optimally weighted -MD estimator has an asymptotic distribution that is invariant to . The invariance result is especially unexpected given the findings in Aguirregabiria and Mira (2007) for -PML estimators. Our main result implies two new corollaries about the optimal -MD estimator (derived by Pesendorfer and Schmidt-Dengler (2008)). First, the optimal -MD estimator is efficient in the class of -MD estimators for all . In other words, additional PIs do not provide first-order efficiency gains relative to the optimal -MD estimator. Second, the optimal -MD estimator is more or equally efficient than any -PML estimator for all . Finally, the Appendix provides appropriate conditions under which the optimal -MD estimator is efficient among regular estimators.

Suggested Citation

  • Federico A Bugni & Jackson Bunting, 2021. "On the Iterated Estimation of Dynamic Discrete Choice Games [Pseudo maximum likelihood estimation of structural models involving fixed-point problems]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(3), pages 1031-1073.
  • Handle: RePEc:oup:restud:v:88:y:2021:i:3:p:1031-1073.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/restud/rdaa032
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Victor Aguirregabiria & Pedro Mira, 2002. "Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models," Econometrica, Econometric Society, vol. 70(4), pages 1519-1543, July.
    2. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    3. Grund, B., 1993. "Kernel Estimators for Cell Probabilities," Journal of Multivariate Analysis, Elsevier, vol. 46(2), pages 283-308, August.
    4. Kasahara, Hiroyuki & Shimotsu, Katsumi, 2008. "Pseudo-likelihood estimation and bootstrap inference for structural discrete Markov decision models," Journal of Econometrics, Elsevier, vol. 146(1), pages 92-106, September.
    5. Martin Pesendorfer & Philipp Schmidt-Dengler, 2008. "Asymptotic Least Squares Estimators for Dynamic Games -super-1," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(3), pages 901-928.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Dearing & Jason R. Blevins, 2019. "Efficient and Convergent Sequential Pseudo-Likelihood Estimation of Dynamic Discrete Games," Papers 1912.10488, arXiv.org, revised Apr 2024.
    2. Victor Aguirregabiria & Mathieu Marcoux, 2021. "Imposing equilibrium restrictions in the estimation of dynamic discrete games," Quantitative Economics, Econometric Society, vol. 12(4), pages 1223-1271, November.
    3. Taisuke Otsu & Martin Pesendorfer, 2021. "Equilibrium multiplicity in dynamic games: testing and estimation," STICERD - Econometrics Paper Series 618, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. Taisuke Otsu & Martin Pesendorfer, 2023. "Equilibrium multiplicity in dynamic games: Testing and estimation," The Econometrics Journal, Royal Economic Society, vol. 26(1), pages 26-42.
    5. Blevins, Jason R. & Kim, Minhae, 2024. "Nested Pseudo likelihood estimation of continuous-time dynamic discrete games," Journal of Econometrics, Elsevier, vol. 238(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hiroyuki Kasahara & Katsumi Shimotsu, 2012. "Sequential Estimation of Structural Models With a Fixed Point Constraint," Econometrica, Econometric Society, vol. 80(5), pages 2303-2319, September.
    2. Srisuma, Sorawoot & Linton, Oliver, 2012. "Semiparametric estimation of Markov decision processes with continuous state space," Journal of Econometrics, Elsevier, vol. 166(2), pages 320-341.
    3. Victor Aguirregabiria & Arvind Magesan, 2013. "Euler Equations for the Estimation of Dynamic Discrete Choice Structural Models," Advances in Econometrics, in: Structural Econometric Models, volume 31, pages 3-44, Emerald Group Publishing Limited.
    4. Aguirregabiria, Victor & Nevo, Aviv, 2010. "Recent developments in empirical IO: dynamic demand and dynamic games," MPRA Paper 27814, University Library of Munich, Germany.
    5. Yu Zheng & Juan Pantano, 2012. "Using Subjective Expectations Data to Allow for Unobserved Heterogeneity in Hotz-Miller Estimation Strategies," 2012 Meeting Papers 940, Society for Economic Dynamics.
    6. Karun Adusumilli & Dita Eckardt, 2019. "Temporal-Difference estimation of dynamic discrete choice models," Papers 1912.09509, arXiv.org, revised Dec 2022.
    7. Victor Aguirregabiria & Mathieu Marcoux, 2021. "Imposing equilibrium restrictions in the estimation of dynamic discrete games," Quantitative Economics, Econometric Society, vol. 12(4), pages 1223-1271, November.
    8. Adam Dearing & Jason R. Blevins, 2019. "Efficient and Convergent Sequential Pseudo-Likelihood Estimation of Dynamic Discrete Games," Papers 1912.10488, arXiv.org, revised Apr 2024.
    9. Aguirregabiria, Victor & Magesan, Arvind, 2013. "Euler Equations for the Estimation of Dynamic Discrete Choice Structural," MPRA Paper 46056, University Library of Munich, Germany.
    10. Peter Arcidiacono & Robert A. Miller, 2011. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 79(6), pages 1823-1867, November.
    11. Paul Ellickson & Sanjog Misra, 2012. "Enriching interactions: Incorporating outcome data into static discrete games," Quantitative Marketing and Economics (QME), Springer, vol. 10(1), pages 1-26, March.
    12. Joao Macieira, 2010. "Oblivious Equilibrium in Dynamic Discrete Games," 2010 Meeting Papers 680, Society for Economic Dynamics.
    13. Yingyao Hu & Yi Xin, 2019. "Identi?cation and estimation of dynamic structural models with unobserved choices," CeMMAP working papers CWP35/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Hanming Fang & Yang Wang, 2015. "Estimating Dynamic Discrete Choice Models With Hyperbolic Discounting, With An Application To Mammography Decisions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 565-596, May.
    15. Hiroyuki Kasahara & Katsumi Shimotsu, 2018. "Estimation of Discrete Choice Dynamic Programming Models," The Japanese Economic Review, Japanese Economic Association, vol. 69(1), pages 28-58, March.
    16. Patrick Bajari & C. Lanier Benkard & Jonathan Levin, 2007. "Estimating Dynamic Models of Imperfect Competition," Econometrica, Econometric Society, vol. 75(5), pages 1331-1370, September.
    17. Kasahara, Hiroyuki & Shimotsu, Katsumi, 2008. "Pseudo-likelihood estimation and bootstrap inference for structural discrete Markov decision models," Journal of Econometrics, Elsevier, vol. 146(1), pages 92-106, September.
    18. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    19. Federico A. Bugni & Jackson Bunting & Takuya Ura, 2020. "Testing homogeneity in dynamic discrete games in finite samples," Papers 2010.02297, arXiv.org, revised Aug 2024.
    20. Komarova, Tatiana & Sanches, Fábio Adriano & Silva Junior, Daniel & Srisuma, Sorawoot, 2018. "Joint analysis of the discount factor and payoff parameters in dynamic discrete choice games," LSE Research Online Documents on Economics 86858, London School of Economics and Political Science, LSE Library.

    More about this item

    Keywords

    Dynamic discrete choice problems; Dynamic games; Pseudo maximum likelihood estimator; Minimum distance estimator; Estimation; Optimality; Efficiency;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:88:y:2021:i:3:p:1031-1073.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/restud .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.