IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v17y2022ip720-729..html
   My bibliography  Save this article

Optimal scheduling of building integrated energy systems using an improved ant lion algorithm
[Technical characteristics of China's new generation power system in energy transformation]

Author

Listed:
  • Liming Wei
  • Shuo Xv

Abstract

In order to deal with the increasingly severe energy shortage problem, to find new energy solutions and to alleviate the dual pressure of domestic energy and environment, building a new type of multi-energy complementary power system has become one of the hot issues in recent years. This paper presents an optimal scheduling model of building integrated energy system (BIES) based on the comprehensive utilization of electricity, heat and gas. Based on the traditional combined cooling, heating, and power (CCHP) system, this model adds wind power and photoelectric renewable energy power generation systems, ground source heat pump system and energy storage system. Then, taking the environmental cost and system operation and maintenance cost as the objective function, it is solved by using the improved multi-objective ant lion algorithm based on differential evolution. Finally, a building in Northeast China is taken as an example to verify the simulation. The simulation results show that the optimal scheduling model of building integrated energy system proposed in this paper can promote the consumption of renewable energy such as wind power and photoelectric, realize the peak cutting and valley filling of power load, effectively reduce the economic operation cost of the system, reduce carbon emissions and effectively solve the problem of environmental pollution to a certain extent.

Suggested Citation

  • Liming Wei & Shuo Xv, 2022. "Optimal scheduling of building integrated energy systems using an improved ant lion algorithm [Technical characteristics of China's new generation power system in energy transformation]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 720-729.
  • Handle: RePEc:oup:ijlctc:v:17:y:2022:i::p:720-729.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctac054
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roy, Kallol & Mandal, Kamal Krishna & Mandal, Atis Chandra, 2019. "Ant-Lion Optimizer algorithm and recurrent neural network for energy management of micro grid connected system," Energy, Elsevier, vol. 167(C), pages 402-416.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye Li & Shixuan Li & Shiyao Xia & Bojia Li & Xinyu Zhang & Boyuan Wang & Tianzhen Ye & Wandong Zheng, 2023. "A Review on the Policy, Technology and Evaluation Method of Low-Carbon Buildings and Communities," Energies, MDPI, vol. 16(4), pages 1-43, February.
    2. Auza, Anna & Asadi, Ehsan & Chenari, Behrang & Gameiro da Silva, Manuel, 2024. "Review of cost objective functions in multi-objective optimisation analysis of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barik, Soumyabrata & Das, Debapriya, 2020. "A novel Q−PQV bus pair method of biomass DGs placement in distribution networks to maintain the voltage of remotely located buses," Energy, Elsevier, vol. 194(C).
    2. Fatemeh Marzbani & Akmal Abdelfatah, 2024. "Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review," Energies, MDPI, vol. 17(3), pages 1-31, January.
    3. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    4. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. V, Kavitha & V, Malathi & Guerrero, Josep M. & Bazmohammadi, Najmeh, 2022. "Energy management system using Mimosa Pudica optimization technique for microgrid applications," Energy, Elsevier, vol. 244(PA).
    6. Wu, Kunming & Li, Qiang & Chen, Ziyu & Lin, Jiayang & Yi, Yongli & Chen, Minyou, 2021. "Distributed optimization method with weighted gradients for economic dispatch problem of multi-microgrid systems," Energy, Elsevier, vol. 222(C).
    7. Yan, Zhongzhen & Zhu, Xinyuan & Chang, Yiming & Wang, Xianglong & Ye, Zhiwei & Xu, Zhigang & Fars, Ashk, 2023. "Renewable energy effects on energy management based on demand response in microgrids environment," Renewable Energy, Elsevier, vol. 213(C), pages 205-217.
    8. Md Mainul Islam & Mahmood Nagrial & Jamal Rizk & Ali Hellany, 2021. "General Aspects, Islanding Detection, and Energy Management in Microgrids: A Review," Sustainability, MDPI, vol. 13(16), pages 1-45, August.
    9. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Huang, Congzhi, 2024. "A hierarchical reinforcement learning GPC for flexible operation of ultra-supercritical unit considering economy," Energy, Elsevier, vol. 289(C).
    10. Tayab, Usman Bashir & Lu, Junwei & Yang, Fuwen & AlGarni, Tahani Saad & Kashif, Muhammad, 2021. "Energy management system for microgrids using weighted salp swarm algorithm and hybrid forecasting approach," Renewable Energy, Elsevier, vol. 180(C), pages 467-481.
    11. Tri-Hai Nguyen & Luong Vuong Nguyen & Jason J. Jung & Israel Edem Agbehadji & Samuel Ofori Frimpong & Richard C. Millham, 2020. "Bio-Inspired Approaches for Smart Energy Management: State of the Art and Challenges," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    12. Jithendranath, J. & Das, Debapriya & Guerrero, Josep M., 2021. "Probabilistic optimal power flow in islanded microgrids with load, wind and solar uncertainties including intermittent generation spatial correlation," Energy, Elsevier, vol. 222(C).
    13. Zupančič, Jernej & Filipič, Bogdan & Gams, Matjaž, 2020. "Genetic-programming-based multi-objective optimization of strategies for home energy-management systems," Energy, Elsevier, vol. 203(C).
    14. Zhang, M.Y. & Chen, J.J. & Yang, Z.J. & Peng, K. & Zhao, Y.L. & Zhang, X.H., 2021. "Stochastic day-ahead scheduling of irrigation system integrated agricultural microgrid with pumped storage and uncertain wind power," Energy, Elsevier, vol. 237(C).
    15. Muhammad Salman Sami & Muhammad Abrar & Rizwan Akram & Muhammad Majid Hussain & Mian Hammad Nazir & Muhammad Saad Khan & Safdar Raza, 2021. "Energy Management of Microgrids for Smart Cities: A Review," Energies, MDPI, vol. 14(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:17:y:2022:i::p:720-729.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.