IDEAS home Printed from https://ideas.repec.org/a/oup/erevae/v36y2009i3p343-367.html
   My bibliography  Save this article

Modelling farm production decisions under an expenditure constraint

Author

Listed:
  • Subal C. Kumbhakar
  • Raushan Bokusheva

Abstract

We use the indirect production function approach in the stochastic frontier framework to estimate separately the output losses due to the presence of a budget constraint and technical inefficiency. We develop a methodology for estimating the severity and testing the significance of the expenditure constraint at individual producer level. Our results, based on the farm data from three Russian regions from 1999 to 2003, show that the majority of the farms studied were expenditure-constrained during the study period. Expenditure constraints caused, on average, a potential output loss of 20 per cent. Output loss due to technical inefficiency, on average, is found to be around 13 per cent. Oxford University Press and Foundation for the European Review of Agricultural Economics 2009; all rights reserved. For permissions, please email journals.permissions@oxfordjournals.org, Oxford University Press.

Suggested Citation

  • Subal C. Kumbhakar & Raushan Bokusheva, 2009. "Modelling farm production decisions under an expenditure constraint," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 36(3), pages 343-367, September.
  • Handle: RePEc:oup:erevae:v:36:y:2009:i:3:p:343-367
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/erae/jbp031
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Raushan Bokusheva & Heinrich Hockmann, 2006. "Production risk and technical inefficiency in Russian agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 33(1), pages 93-118, March.
    2. Anjana Bhattacharyya & Subal C. Kumbhakar, 1997. "Market Imperfections and Output Loss in the Presence of Expenditure Constraint: A Generalized Shadow Price Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(3), pages 860-871.
    3. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Obeng, K. & Sakano, R. & Naanwaab, C., 2016. "Understanding overall output efficiency in public transit systems: The roles of input regulations, perceived budget and input subsidies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 133-150.
    2. Skevas, Ioannis, 2020. "Inference in the spatial autoregressive efficiency model with an application to Dutch dairy farms," European Journal of Operational Research, Elsevier, vol. 283(1), pages 356-364.
    3. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    4. Ioannis Skevas & Alfons Oude Lansink, 2020. "Dynamic Inefficiency and Spatial Spillovers in Dutch Dairy Farming," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(3), pages 742-759, September.
    5. Barbora Hřebíková & Lukáš Čechura, 2015. "An Analysis of the Impacts of Weather on Technical Efficiency in Czech Agriculture," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 63(5), pages 1645-1652.
    6. Jin, Man & Zhao, Shunan & Kumbhakar, Subal C., 2019. "Financial constraints and firm productivity: Evidence from Chinese manufacturing," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1139-1156.
    7. Christian Stetter & Johannes Sauer, 2022. "Greenhouse Gas Emissions and Eco-Performance at Farm Level: A Parametric Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 617-647, March.
    8. Melina Lamkowsky & Miranda P. M. Meuwissen & Harold A. B. van der Meulen & Frederic Ang, 2024. "How limiting is finance for Dutch dairy farms? A dynamic profit analysis," Journal of Agricultural Economics, Wiley Blackwell, vol. 75(1), pages 382-403, February.
    9. Marian Rizov & Jan Pokrivcak & Pavel Ciaian, 2013. "CAP Subsidies and Productivity of the EU Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(3), pages 537-557, September.
    10. Ioannis Skevas & Grigorios Emvalomatis & Bernhard Brümmer, 2018. "The effect of farm characteristics on the persistence of technical inefficiency: a case study in German dairy farming," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 3-25.
    11. K. Obeng, 2011. "Indirect production function and the output effect of public transit subsidies," Transportation, Springer, vol. 38(2), pages 191-214, March.
    12. Moro, Daniele & Sckokai, Paolo, 2013. "The impact of decoupled payments on farm choices: Conceptual and methodological challenges," Food Policy, Elsevier, vol. 41(C), pages 28-38.
    13. Frýd, Lukáš & Sokol, Ondřej, 2021. "Relationships between technical efficiency and subsidies for Czech farms: A two-stage robust approach," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    14. Pokrivčák, Ján & Tóth, Marián, 2022. "Financing Gap of Agro-food Firms and the Role of Policies," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 14(3), September.
    15. Dzanku, F.M. & Osei, R.D., 2018. "Impact of pre– and post-harvest training reminders on crop losses and food poverty in Mali," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275924, International Association of Agricultural Economists.
    16. Helen Pushkarskaya & Maria Marshall, 2010. "Family Structure, Policy Shocks, and Family Business Adjustment Choices," Journal of Family and Economic Issues, Springer, vol. 31(4), pages 414-426, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali D. Cagdas & Scott R. Jeffrey & Elwin G. Smith & Peter C. Boxall, 2016. "Environmental Stewardship and Technical Efficiency in Canadian Prairie Canola Production," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(3), pages 455-477, September.
    2. Lukáš Čechura & Heinrich Hockmann, 2017. "Heterogeneity in Production Structures and Efficiency: An Analysis of the Czech Food Processing Industry," Pacific Economic Review, Wiley Blackwell, vol. 22(4), pages 702-719, October.
    3. Mujawamariya, Gaudiose & Medagbe, Florent M. Kinkingninhoun & Karimov, Aziz, 2017. "Integrating quantified risk in efficiency analysis: evidence from rice production in East and Southern Africa," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 56(4), December.
    4. Cagdas, Ali D. & Jeffrey, Scott R. & Smith, Elwin G. & Boxall, Peter C., 2013. "Adoption of BMPs and technical inefficiency in Canadian canola production," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150200, Agricultural and Applied Economics Association.
    5. Cechura, Lukas & Hockmann, Heinrich, 2011. "Efficiency and Heterogeneity in Czech Food Processing Industry," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114314, European Association of Agricultural Economists.
    6. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499.
    7. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    8. António Afonso & Ana Patricia Montes & José M. Domínguez, 2024. "Measuring Tax Burden Efficiency in OECD Countries: An International Comparison," CESifo Working Paper Series 11333, CESifo.
    9. Barros, Carlos Pestana & Williams, Jonathan, 2013. "The random parameters stochastic frontier cost function and the effectiveness of public policy: Evidence from bank restructuring in Mexico," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 98-108.
    10. Ligia Alba Melo-Becerra & Luis E. Arango & Oscar Iván Ávila-Montealegre & Jhorland Ayala-García & Leonardo Bonilla-Mejía & Jesús Alonso Botero-García & Carolina Crispin-Fory & Manuela Cardona & Daniel, 2023. "Aspectos financieros y fiscales del sistema de salud en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 106, pages 1-92, October.
    11. Khanal, Aditya & Koirala, Krishna & Regmi, Madhav, 2016. "Do Financial Constraints Affect Production Efficiency in Drought Prone Areas? A Case from Indonesian Rice Growers," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230087, Southern Agricultural Economics Association.
    12. Firna Varina & Sri Hartoyo & Nunung Kusnadi & Amzul Rifin, 2020. "The Determinants of Technical Efficiency of Oil Palm Smallholders in Indonesia," International Journal of Economics and Financial Issues, Econjournals, vol. 10(6), pages 89-93.
    13. Victor Moutinho & Mara Madaleno, 2021. "Assessing Eco-Efficiency in Asian and African Countries Using Stochastic Frontier Analysis," Energies, MDPI, vol. 14(4), pages 1-17, February.
    14. Mohammed, Rezgar & Saghaian, Sayed, 2014. "Technical Efficiency Estimation of Rice Production in South Korea," 2014 Annual Meeting, February 1-4, 2014, Dallas, Texas 162231, Southern Agricultural Economics Association.
    15. Dhehibi, Boubaker & Lachaal, Lassaad & Elloumi, Mohamed & Messaoud, Emna B., 2007. "Measurement and Sources of Technical Inefficiency in the Tunisian Citrus Growing Sector," 103rd Seminar, April 23-25, 2007, Barcelona, Spain 9391, European Association of Agricultural Economists.
    16. Stephen M. Miller & Terrence M. Clauretie & Thomas M. Springer, 2006. "Economies Of Scale And Cost Efficiencies: A Panel‐Data Stochastic‐Frontier Analysis Of Real Estate Investment Trusts," Manchester School, University of Manchester, vol. 74(4), pages 483-499, July.
    17. Fabiana Rocha & Igor Viveiros Souza, 2007. "Reajuste De Preços Na Indústria Farmacêutica Brasileira E O Fator X: Uma Avaliação Usando O Método De Fronteiras Estocásticas," Anais do XXXV Encontro Nacional de Economia [Proceedings of the 35th Brazilian Economics Meeting] 041, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    18. Gangopadhyay, Partha & Jain, Siddharth & Bakry, Walid, 2022. "In search of a rational foundation for the massive IT boom in the Australian banking industry: Can the IT boom really drive relationship banking?," International Review of Financial Analysis, Elsevier, vol. 82(C).
    19. Jia Li & Yahong Zheng & Bing Liu & Yanyi Chen & Zhihang Zhong & Chenyu Dong & Chaoqun Wang, 2024. "The Synergistic Relationship between Low-Carbon Development of Road Freight Transport and Its Economic Efficiency—A Case Study of Wuhan, China," Sustainability, MDPI, vol. 16(7), pages 1-22, March.
    20. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:erevae:v:36:y:2009:i:3:p:343-367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.