IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v10y2011i1n44.html
   My bibliography  Save this article

Assessing Modularity Using a Random Matrix Theory Approach

Author

Listed:
  • Feher Kristen
  • Whelan James
  • Müller Samuel

Abstract

Random matrix theory (RMT) is well suited to describing the emergent properties of systems with complex interactions amongst their constituents through their eigenvalue spectrums. Some RMT results are applied to the problem of clustering high dimensional biological data with complex dependence structure amongst the variables. It will be shown that a gene relevance or correlation network can be constructed by choosing a correlation threshold in a principled way, such that it corresponds to a block diagonal structure in the correlation matrix, if such a structure exists. The structure is then found using community detection algorithms, but with parameter choice guided by RMT predictions. The resulting clustering is compared to a variety of hierarchical clustering outputs and is found to the most generalised result, in that it captures all the features found by the other considered methods.

Suggested Citation

  • Feher Kristen & Whelan James & Müller Samuel, 2011. "Assessing Modularity Using a Random Matrix Theory Approach," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-34, September.
  • Handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:44
    DOI: 10.2202/1544-6115.1667
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1667
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johnstone, Iain M. & Lu, Arthur Yu, 2009. "On Consistency and Sparsity for Principal Components Analysis in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 682-693.
    2. George C. Tseng & Wing H. Wong, 2005. "Tight Clustering: A Resampling-Based Approach for Identifying Stable and Tight Patterns in Data," Biometrics, The International Biometric Society, vol. 61(1), pages 10-16, March.
    3. Tom C Freeman & Leon Goldovsky & Markus Brosch & Stijn van Dongen & Pierre Mazière & Russell J Grocock & Shiri Freilich & Janet Thornton & Anton J Enright, 2007. "Construction, Visualisation, and Clustering of Transcription Networks from Microarray Expression Data," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-11, October.
    4. Beatrix Jones & Mike West, 2005. "Covariance decomposition in undirected Gaussian graphical models," Biometrika, Biometrika Trust, vol. 92(4), pages 779-786, December.
    5. Efron, Bradley, 2007. "Correlation and Large-Scale Simultaneous Significance Testing," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 93-103, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feher Kristen & Whelan James & Müller Samuel, 2012. "Exploring Multicollinearity Using a Random Matrix Theory Approach," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-35, May.
    2. Ruijin Du & Gaogao Dong & Lixin Tian & Minggang Wang & Guochang Fang & Shuai Shao, 2016. "Spatiotemporal Dynamics and Fitness Analysis of Global Oil Market: Based on Complex Network," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    2. Puyi Fang & Zhaoxing Gao & Ruey S. Tsay, 2023. "Determination of the effective cointegration rank in high-dimensional time-series predictive regressions," Papers 2304.12134, arXiv.org, revised Apr 2023.
    3. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    4. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    5. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    6. Yata, Kazuyoshi & Aoshima, Makoto, 2013. "PCA consistency for the power spiked model in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 334-354.
    7. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    8. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    9. Yujia Li & Xiangrui Zeng & Chien‐Wei Lin & George C. Tseng, 2022. "Simultaneous estimation of cluster number and feature sparsity in high‐dimensional cluster analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 574-585, June.
    10. Liu, Xueli & Lee, Sheng-Chien & Casella, George & Peter, Gary F., 2008. "Assessing agreement of clustering methods with gene expression microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5356-5366, August.
    11. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    12. Wang, Shao-Hsuan & Huang, Su-Yun, 2022. "Perturbation theory for cross data matrix-based PCA," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    13. Namvar, Ethan & Phillips, Blake & Pukthuanthong, Kuntara & Raghavendra Rau, P., 2016. "Do hedge funds dynamically manage systematic risk?," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 1-15.
    14. Li, Weiming & Gao, Jing & Li, Kunpeng & Yao, Qiwei, 2016. "Modelling multivariate volatilities via latent common factors," LSE Research Online Documents on Economics 68121, London School of Economics and Political Science, LSE Library.
    15. Silin, Igor & Spokoiny, Vladimir, 2018. "Bayesian inference for spectral projectors of covariance matrix," IRTG 1792 Discussion Papers 2018-027, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    16. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    17. Steland, Ansgar, 2020. "Testing and estimating change-points in the covariance matrix of a high-dimensional time series," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    18. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    19. Lam, Clifford & Yao, Qiwei & Bathia, Neil, 2011. "Estimation of latent factors for high-dimensional time series," LSE Research Online Documents on Economics 31549, London School of Economics and Political Science, LSE Library.
    20. Kristoffer Herland Hellton & Magne Thoresen, 2014. "The Impact of Measurement Error on Principal Component Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1051-1063, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.