IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i8p1592-1610.html
   My bibliography  Save this article

Methods for improvement in estimation of a normal mean matrix

Author

Listed:
  • Tsukuma, Hisayuki
  • Kubokawa, Tatsuya

Abstract

This paper is concerned with the problem of estimating a matrix of means in multivariate normal distributions with an unknown covariance matrix under invariant quadratic loss. It is first shown that the modified Efron-Morris estimator is characterized as a certain empirical Bayes estimator. This estimator modifies the crude Efron-Morris estimator by adding a scalar shrinkage term. It is next shown that the idea of this modification provides a general method for improvement of estimators, which results in the further improvement on several minimax estimators. As a new method for improvement, an adaptive combination of the modified Stein and the James-Stein estimators is also proposed and is shown to be minimax. Through Monte Carlo studies of the risk behaviors, it is numerically shown that the proposed, combined estimator inherits the nice risk properties of both individual estimators and thus it has a very favorable risk behavior in a small sample case. Finally, the application to a two-way layout MANOVA model with interactions is discussed.

Suggested Citation

  • Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2007. "Methods for improvement in estimation of a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1592-1610, September.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:8:p:1592-1610
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00063-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Konno, Yoshihiko, 1991. "On estimation of a matrix of normal means with unknown covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 36(1), pages 44-55, January.
    2. Ghosh, Malay & Shieh, Gwowen, 1991. "Empirical Bayes minimax estimators of matrix normal means," Journal of Multivariate Analysis, Elsevier, vol. 38(2), pages 306-318, August.
    3. Hisayuki Tsukuma & Tatsuya Kubokawa, 2005. "Methods for Improvement in Estimation of a Normal Mean Matrix," CIRJE F-Series CIRJE-F-378, CIRJE, Faculty of Economics, University of Tokyo.
    4. Dey, Dipak K., 1987. "Improved estimation of a multinormal precision matrix," Statistics & Probability Letters, Elsevier, vol. 6(2), pages 125-128, November.
    5. Bilodeau, Martin & Kariya, Takeaki, 1989. "Minimax estimators in the normal MANOVA model," Journal of Multivariate Analysis, Elsevier, vol. 28(2), pages 260-270, February.
    6. Loh, Wei-Liem, 1991. "Estimating covariance matrices II," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 163-174, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsukuma, Hisayuki, 2009. "Generalized Bayes minimax estimation of the normal mean matrix with unknown covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2296-2304, November.
    2. Hisayuki Tsukuma & Tatsuya Kubokawa, 2014. "A Unified Approach to Estimating a Normal Mean Matrix in High and Low Dimensions," CIRJE F-Series CIRJE-F-926, CIRJE, Faculty of Economics, University of Tokyo.
    3. Matsuda, Takeru & Strawderman, William E., 2019. "Improved loss estimation for a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 300-311.
    4. Yuasa, Ryota & Kubokawa, Tatsuya, 2023. "Weighted shrinkage estimators of normal mean matrices and dominance properties," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    5. Xu, Kai & He, Daojiang, 2015. "Further results on estimation of covariance matrix," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 11-20.
    6. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2015. "A unified approach to estimating a normal mean matrix in high and low dimensions," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 312-328.
    7. Yuasa, Ryota & Kubokawa, Tatsuya, 2020. "Ridge-type linear shrinkage estimation of the mean matrix of a high-dimensional normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hisayuki Tsukuma & Tatsuya Kubokawa, 2005. "Methods for Improvement in Estimation of a Normal Mean Matrix," CIRJE F-Series CIRJE-F-378, CIRJE, Faculty of Economics, University of Tokyo.
    2. Tsukuma, Hisayuki, 2009. "Generalized Bayes minimax estimation of the normal mean matrix with unknown covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2296-2304, November.
    3. Hisayuki Tsukuma & Tatsuya Kubokawa, 2014. "A Unified Approach to Estimating a Normal Mean Matrix in High and Low Dimensions," CIRJE F-Series CIRJE-F-926, CIRJE, Faculty of Economics, University of Tokyo.
    4. Kubokawa, T. & Srivastava, M. S., 2001. "Robust Improvement in Estimation of a Mean Matrix in an Elliptically Contoured Distribution," Journal of Multivariate Analysis, Elsevier, vol. 76(1), pages 138-152, January.
    5. Kubokawa, T. & Srivastava, M. S., 2002. "Estimating Risk and the Mean Squared Error Matrix in Stein Estimation," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 39-64, July.
    6. Shokofeh Zinodiny & Saralees Nadarajah, 2024. "A New Class of Bayes Minimax Estimators of the Mean Matrix of a Matrix Variate Normal Distribution," Mathematics, MDPI, vol. 12(7), pages 1-14, April.
    7. Srivastava, M. S. & Kubokawa, T., 2005. "Minimax multivariate empirical Bayes estimators under multicollinearity," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 394-416, April.
    8. Tatsuya Kubokawa & M. S. Srivastava, 2002. "Minimax Multivariate Empirical Bayes Estimators under Multicollinearity," CIRJE F-Series CIRJE-F-187, CIRJE, Faculty of Economics, University of Tokyo.
    9. Xu, Kai & He, Daojiang, 2015. "Further results on estimation of covariance matrix," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 11-20.
    10. Oman, Samuel D., 2002. "Minimax Hierarchical Empirical Bayes Estimation in Multivariate Regression," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 285-301, February.
    11. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    12. Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
    13. Brett Naul & Bala Rajaratnam & Dario Vincenzi, 2016. "The role of the isotonizing algorithm in Stein’s covariance matrix estimator," Computational Statistics, Springer, vol. 31(4), pages 1453-1476, December.
    14. Tsukuma, Hisayuki, 2010. "Shrinkage priors for Bayesian estimation of the mean matrix in an elliptically contoured distribution," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1483-1492, July.
    15. Tsai, Ming-Tien & Kubokawa, Tatsuya, 2007. "Estimation of Wishart mean matrices under simple tree ordering," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 945-959, May.
    16. Pensky, Marianna, 1999. "Nonparametric Empirical Bayes Estimation of the Matrix Parameter of the Wishart Distribution," Journal of Multivariate Analysis, Elsevier, vol. 69(2), pages 242-260, May.
    17. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    18. Yuasa, Ryota & Kubokawa, Tatsuya, 2023. "Weighted shrinkage estimators of normal mean matrices and dominance properties," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    19. Zinodiny, S. & Rezaei, S. & Nadarajah, S., 2017. "Bayes minimax estimation of the mean matrix of matrix-variate normal distribution under balanced loss function," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 110-120.
    20. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2011. "Modifying estimators of ordered positive parameters under the Stein loss," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 164-181, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:8:p:1592-1610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.