IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v198y2024ics0167947324000719.html
   My bibliography  Save this article

Spectral co-clustering in multi-layer directed networks

Author

Listed:
  • Su, Wenqing
  • Guo, Xiao
  • Chang, Xiangyu
  • Yang, Ying

Abstract

Modern network analysis often involves multi-layer network data in which the nodes are aligned, and the edges on each layer represent one of the multiple relations among the nodes. Current literature on multi-layer network data is mostly limited to undirected relations. However, direct relations are more common and may introduce extra information. This study focuses on community detection (or clustering) in multi-layer directed networks. To take into account the asymmetry, a novel spectral-co-clustering-based algorithm is developed to detect co-clusters, which capture the sending patterns and receiving patterns of nodes, respectively. Specifically, the eigendecomposition of the debiased sum of Gram matrices over the layer-wise adjacency matrices is computed, followed by the k-means, where the sum of Gram matrices is used to avoid possible cancellation of clusters caused by direct summation. Theoretical analysis of the algorithm under the multi-layer stochastic co-block model is provided, where the common assumption that the cluster number is coupled with the rank of the model is relaxed. After a systematic analysis of the eigenvectors of the population version algorithm, the misclassification rates are derived, which show that multi-layers would bring benefits to the clustering performance. The experimental results of simulated data corroborate the theoretical predictions, and the analysis of a real-world trade network dataset provides interpretable results.

Suggested Citation

  • Su, Wenqing & Guo, Xiao & Chang, Xiangyu & Yang, Ying, 2024. "Spectral co-clustering in multi-layer directed networks," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:csdana:v:198:y:2024:i:c:s0167947324000719
    DOI: 10.1016/j.csda.2024.107987
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000719
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.107987?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:198:y:2024:i:c:s0167947324000719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.