High-dimensional robust regression with Lq-loss functions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2022.107567
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Y. She & K. Chen, 2017. "Robust reduced-rank regression," Biometrika, Biometrika Trust, vol. 104(3), pages 633-647.
- Jelena Bradic & Jianqing Fan & Weiwei Wang, 2011. "Penalized composite quasi‐likelihood for ultrahigh dimensional variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 325-349, June.
- Qiang Sun & Wen-Xin Zhou & Jianqing Fan, 2020. "Adaptive Huber Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 254-265, January.
- Peter Libby, 2002. "Inflammation in atherosclerosis," Nature, Nature, vol. 420(6917), pages 868-874, December.
- Wang, Lie, 2013. "The L1 penalized LAD estimator for high dimensional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 135-151.
- Jianqing Fan & Quefeng Li & Yuyan Wang, 2017. "Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 247-265, January.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Xueqin Wang & Yunlu Jiang & Mian Huang & Heping Zhang, 2013. "Robust Variable Selection With Exponential Squared Loss," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 632-643, June.
- Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
- Smucler, Ezequiel & Yohai, Victor J., 2017. "Robust and sparse estimators for linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 116-130.
- Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
- Han, Dongxiao & Huang, Jian & Lin, Yuanyuan & Shen, Guohao, 2022. "Robust post-selection inference of high-dimensional mean regression with heavy-tailed asymmetric or heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 230(2), pages 416-431.
- Jun Zhao & Guan’ao Yan & Yi Zhang, 2022. "Robust estimation and shrinkage in ultrahigh dimensional expectile regression with heavy tails and variance heterogeneity," Statistical Papers, Springer, vol. 63(1), pages 1-28, February.
- Yuyang Liu & Pengfei Pi & Shan Luo, 2023. "A semi-parametric approach to feature selection in high-dimensional linear regression models," Computational Statistics, Springer, vol. 38(2), pages 979-1000, June.
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2018.
"Oracle Estimation of a Change Point in High-Dimensional Quantile Regression,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1184-1194, July.
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2016. "Oracle Estimation of a Change Point in High Dimensional Quantile Regression," Papers 1603.00235, arXiv.org, revised Dec 2016.
- Luo, Bin & Gao, Xiaoli, 2022. "High-dimensional robust approximated M-estimators for mean regression with asymmetric data," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2016.
"The lasso for high dimensional regression with a possible change point,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 193-210, January.
- Sokbae (Simon) Lee & Myung Hwan Seo & Youngki Shin, 2014. "The lasso for high-dimensional regression with a possible change-point," CeMMAP working papers 26/14, Institute for Fiscal Studies.
- Sokbae (Simon) Lee & Myung Hwan Seo & Youngki Shin, 2014. "The lasso for high-dimensional regression with a possible change-point," CeMMAP working papers CWP26/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
- Zhao, Jun & Chen, Yingyu & Zhang, Yi, 2018. "Expectile regression for analyzing heteroscedasticity in high dimension," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 304-311.
- Chen, Le-Yu & Lee, Sokbae, 2023.
"Sparse quantile regression,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 2195-2217.
- Le-Yu Chen & Sokbae Lee, 2020. "Sparse Quantile Regression," Papers 2006.11201, arXiv.org, revised Mar 2023.
- Le-Yu Chen & Sokbae (Simon) Lee, 2020. "Sparse Quantile Regression," CeMMAP working papers CWP30/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Khan, Faridoon & Muhammadullah, Sara & Sharif, Arshian & Lee, Chien-Chiang, 2024. "The role of green energy stock market in forecasting China's crude oil market: An application of IIS approach and sparse regression models," Energy Economics, Elsevier, vol. 130(C).
- Xiaofei Wu & Rongmei Liang & Hu Yang, 2022. "Penalized and constrained LAD estimation in fixed and high dimension," Statistical Papers, Springer, vol. 63(1), pages 53-95, February.
- Man, Rebeka & Tan, Kean Ming & Wang, Zian & Zhou, Wen-Xin, 2024. "Retire: Robust expectile regression in high dimensions," Journal of Econometrics, Elsevier, vol. 239(2).
- Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
- Yao, Fang & Sue-Chee, Shivon & Wang, Fan, 2017. "Regularized partially functional quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 39-56.
- Kean Ming Tan & Lan Wang & Wen‐Xin Zhou, 2022. "High‐dimensional quantile regression: Convolution smoothing and concave regularization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 205-233, February.
- Wang, Shangshan & Xiang, Liming, 2017. "Two-layer EM algorithm for ALD mixture regression models: A new solution to composite quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 136-154.
- Mohamed Ouhourane & Yi Yang & Andréa L. Benedet & Karim Oualkacha, 2022. "Group penalized quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 495-529, September.
- Thompson, Ryan, 2022. "Robust subset selection," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
- Jiang, Rong & Qian, Wei-Min, 2016. "Quantile regression for single-index-coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 305-317.
More about this item
Keywords
Robust regularization; High-dimensional data; Lq-loss functions; Model selection; Oracle properties;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:176:y:2022:i:c:s0167947322001475. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.