IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v52y2003i2p213-226.html
   My bibliography  Save this article

Analysing state dependences in emotional experiences by dynamic count data models

Author

Listed:
  • Ulf Böckenholt

Abstract

Summary. The paper presents a multilevel framework for the analysis of multivariate count data that are observed over several time periods for a random sample of individuals. The approach proposed facilitates studying observed and unobserved sources of dependences among the event categories in the presence of possibly higher order autoregressive effects. In an investigation of the relationships between pleasant and unpleasant emotional experiences and the personality traits neuroticism and extraversion over time, we find that the two personality factors are related to both the mean rates of the emotional experiences and their carry‐over effects. Respondents with high neuroticism scores not only reported more unpleasant than pleasant emotional experiences but also exhibited higher carry‐over effects for unpleasant than for pleasant emotions. In contrast, respondents with high extraversion scores reported fewer anxiety and more euphoria emotions than respondents with low extraversion scores with weaker carry‐over effects for both pleasant and unpleasant emotions.

Suggested Citation

  • Ulf Böckenholt, 2003. "Analysing state dependences in emotional experiences by dynamic count data models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(2), pages 213-226, May.
  • Handle: RePEc:bla:jorssc:v:52:y:2003:i:2:p:213-226
    DOI: 10.1111/1467-9876.00399
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9876.00399
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9876.00399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lindsey, J. K., 1999. "Models for Repeated Measurements," OUP Catalogue, Oxford University Press, edition 2, number 9780198505594.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feike C. Drost & Ramon Van Den Akker & Bas J. M. Werker, 2008. "Local asymptotic normality and efficient estimation for INAR(p) models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 783-801, September.
    2. Francesco Bravo, 2011. "Comment on: Subsampling weakly dependent time series and application to extremes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 483-486, November.
    3. Drost, F.C. & van den Akker, R. & Werker, B.J.M., 2008. "Efficient Estimation of Autoregression Parameters and Innovation Distributions forSemiparametric Integer-Valued AR(p) Models (Revision of DP 2007-23)," Other publications TiSEM cef533d0-6b49-4ce9-8cd2-7, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianni Betti & Antonella D’Agostino & Laura Neri, 2002. "Panel regression models for measuring multidimensional poverty dynamics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(3), pages 359-369, October.
    2. P. J. Lindsey & J. Kaufmann, 2004. "Analysis of a longitudinal ordinal response clinical trial using dynamic models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(3), pages 523-537, August.
    3. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    4. Nadia Solaro & Pier Ferrari, 2007. "Robustness of Parameter Estimation Procedures in Multilevel Models When Random Effects are MEP Distributed," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(1), pages 51-67, June.
    5. Devin S. Johnson & Jennifer A. Hoeting, 2003. "Autoregressive Models for Capture-Recapture Data: A Bayesian Approach," Biometrics, The International Biometric Society, vol. 59(2), pages 341-350, June.
    6. Marta Nai Ruscone & Daniel Fernández, 2021. "Dynamics of HDI Index: Temporal Dependence Based on D-vine Copulas Model for Three-Way Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 158(2), pages 563-593, December.
    7. Ivy Liu & Alan Agresti, 2005. "The analysis of ordered categorical data: An overview and a survey of recent developments," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(1), pages 1-73, June.
    8. A. Azarbar & Y. Zhang & S. Nadarajah, 2019. "An investigation of effective factors on children’s growth failure in Iran using multilevel models," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(2), pages 553-560, March.
    9. D. M. Farewell & C. Huang & V. Didelez, 2017. "Ignorability for general longitudinal data," Biometrika, Biometrika Trust, vol. 104(2), pages 317-326.
    10. Luca Merlo & Lea Petrella & Nikos Tzavidis, 2022. "Quantile mixed hidden Markov models for multivariate longitudinal data: An application to children's Strengths and Difficulties Questionnaire scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 417-448, March.
    11. Mohsen Pourahmadi, 2002. "Graphical Diagnostics for Modeling Unstructured Covariance Matrices," International Statistical Review, International Statistical Institute, vol. 70(3), pages 395-417, December.
    12. Courgeau, Daniel, 2007. "Multilevel synthesis. From the group to the individual," MPRA Paper 43189, University Library of Munich, Germany.
    13. Lindsey, J.K. & Lindsey, P.J., 2006. "Multivariate distributions with correlation matrices for nonlinear repeated measurements," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 720-732, February.
    14. M. Pourahmadi & M. J. Daniels, 2002. "Dynamic Conditionally Linear Mixed Models for Longitudinal Data," Biometrics, The International Biometric Society, vol. 58(1), pages 225-231, March.
    15. Filomena Maggino & Carolina Facioni, 2017. "Measuring Stability and Change: Methodological Issues in Quality of Life studies," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 130(1), pages 161-187, January.
    16. Susanne May & Victor DeGruttola, 2007. "Nonparametric Tests for Two-Group Comparisons of Dependent Observations Obtained at Varying Time Points," Biometrics, The International Biometric Society, vol. 63(1), pages 194-200, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:52:y:2003:i:2:p:213-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.