IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v53y2004i3p523-537.html
   My bibliography  Save this article

Analysis of a longitudinal ordinal response clinical trial using dynamic models

Author

Listed:
  • P. J. Lindsey
  • J. Kaufmann

Abstract

Summary. In many areas of pharmaceutical research, there has been increasing use of categorical data and more specifically ordinal responses. In many cases, complex models are required to account for different types of dependences among the responses. The clinical trial that is considered here involved patients who were required to remain in a particular state to enable the doctors to examine their heart. The aim of this trial was to study the relationship between the dose of the drug administered and the time that was spent by the patient in the state permitting examination. The patient's state was measured every second by a continuous Doppler signal which was categorized by the doctors into one of four ordered categories. Hence, the response consisted of repeated ordinal series. These series were of different lengths because the drug effect wore off faster (or slower) on certain patients depending on the drug dose administered and the infusion rate, and therefore the length of drug administration. A general method for generating new ordinal distributions is presented which is sufficiently flexible to handle unbalanced ordinal repeated measurements. It consists of obtaining a cumulative mixture distribution from a Laplace transform and introducing into it the integrated intensity of a binary logistic, continuation ratio or proportional odds model. Then, a multivariate distribution is constructed by a procedure that is similar to the updating process of the Kalman filter. Several types of history dependences are proposed.

Suggested Citation

  • P. J. Lindsey & J. Kaufmann, 2004. "Analysis of a longitudinal ordinal response clinical trial using dynamic models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(3), pages 523-537, August.
  • Handle: RePEc:bla:jorssc:v:53:y:2004:i:3:p:523-537
    DOI: 10.1111/j.1467-9876.2004.04882.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2004.04882.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2004.04882.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lindsey, J. K., 1999. "Models for Repeated Measurements," OUP Catalogue, Oxford University Press, edition 2, number 9780198505594.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parsons, Nick R. & Costa, Matthew L. & Achten, Juul & Stallard, Nigel, 2009. "Repeated measures proportional odds logistic regression analysis of ordinal score data in the statistical software package R," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 632-641, January.
    2. Varin, Cristiano & Vidoni, Paolo, 2006. "Pairwise likelihood inference for ordinal categorical time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2365-2373, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianni Betti & Antonella D’Agostino & Laura Neri, 2002. "Panel regression models for measuring multidimensional poverty dynamics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(3), pages 359-369, October.
    2. Ulf Böckenholt, 2003. "Analysing state dependences in emotional experiences by dynamic count data models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(2), pages 213-226, May.
    3. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    4. Nadia Solaro & Pier Ferrari, 2007. "Robustness of Parameter Estimation Procedures in Multilevel Models When Random Effects are MEP Distributed," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(1), pages 51-67, June.
    5. Devin S. Johnson & Jennifer A. Hoeting, 2003. "Autoregressive Models for Capture-Recapture Data: A Bayesian Approach," Biometrics, The International Biometric Society, vol. 59(2), pages 341-350, June.
    6. Marta Nai Ruscone & Daniel Fernández, 2021. "Dynamics of HDI Index: Temporal Dependence Based on D-vine Copulas Model for Three-Way Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 158(2), pages 563-593, December.
    7. Ivy Liu & Alan Agresti, 2005. "The analysis of ordered categorical data: An overview and a survey of recent developments," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(1), pages 1-73, June.
    8. A. Azarbar & Y. Zhang & S. Nadarajah, 2019. "An investigation of effective factors on children’s growth failure in Iran using multilevel models," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(2), pages 553-560, March.
    9. D. M. Farewell & C. Huang & V. Didelez, 2017. "Ignorability for general longitudinal data," Biometrika, Biometrika Trust, vol. 104(2), pages 317-326.
    10. Luca Merlo & Lea Petrella & Nikos Tzavidis, 2022. "Quantile mixed hidden Markov models for multivariate longitudinal data: An application to children's Strengths and Difficulties Questionnaire scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 417-448, March.
    11. Mohsen Pourahmadi, 2002. "Graphical Diagnostics for Modeling Unstructured Covariance Matrices," International Statistical Review, International Statistical Institute, vol. 70(3), pages 395-417, December.
    12. Courgeau, Daniel, 2007. "Multilevel synthesis. From the group to the individual," MPRA Paper 43189, University Library of Munich, Germany.
    13. Lindsey, J.K. & Lindsey, P.J., 2006. "Multivariate distributions with correlation matrices for nonlinear repeated measurements," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 720-732, February.
    14. M. Pourahmadi & M. J. Daniels, 2002. "Dynamic Conditionally Linear Mixed Models for Longitudinal Data," Biometrics, The International Biometric Society, vol. 58(1), pages 225-231, March.
    15. Filomena Maggino & Carolina Facioni, 2017. "Measuring Stability and Change: Methodological Issues in Quality of Life studies," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 130(1), pages 161-187, January.
    16. Susanne May & Victor DeGruttola, 2007. "Nonparametric Tests for Two-Group Comparisons of Dependent Observations Obtained at Varying Time Points," Biometrics, The International Biometric Society, vol. 63(1), pages 194-200, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:53:y:2004:i:3:p:523-537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.