IDEAS home Printed from https://ideas.repec.org/a/oup/beheco/v26y2015i2p519-526..html
   My bibliography  Save this article

Ecological drivers of variation in tool-use frequency across sea otter populations

Author

Listed:
  • Jessica A. Fujii
  • Katherine Ralls
  • Martin Tim Tinker

Abstract

Sea otters are well-known tool users, employing objects such as rocks or shells to break open hard-shelled invertebrate prey. However, little is known about how the frequency of tool use varies among sea otter populations and the factors that drive these differences. We examined 17 years of observational data on prey capture and tool use from 8 sea otter populations ranging from southern California to the Aleutian Islands in Alaska. There were significant differences in the diets of these populations as well as variation in the frequency of tool use. Sea otters at Amchitka Island, Alaska, used tools on less than 1% of dives that resulted in the capture of prey compared with approximately 16% in Monterey, California. The percentage of individuals in the population that used tools ranged from 10% to 93%. In all populations, marine snails and thick-shelled bivalves were most likely to be associated with tool use, whereas soft-bodied prey items such as worms and sea stars were the least likely. The probability that a tool would be used on a given prey type varied across populations. The morphology of the prey item being handled and the prevalence of various types of prey in local diets were major ecological drivers of tool use: together they accounted for about 64% of the variation in tool-use frequency among populations. The remaining variation may be related to changes in the relative costs and benefits to an individual otter of learning to use tools effectively under differing ecological circumstances.

Suggested Citation

  • Jessica A. Fujii & Katherine Ralls & Martin Tim Tinker, 2015. "Ecological drivers of variation in tool-use frequency across sea otter populations," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(2), pages 519-526.
  • Handle: RePEc:oup:beheco:v:26:y:2015:i:2:p:519-526.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/beheco/aru220
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noh, Maengseok & Lee, Youngjo, 2007. "REML estimation for binary data in GLMMs," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 896-915, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elisa Bandini & Rachel A. Harrison & Alba Motes-Rodrigo, 2022. "Examining the suitability of extant primates as models of hominin stone tool culture," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    2. Han, Jeongseop & Lee, Youngjo, 2024. "Enhanced Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    3. Chan, Moon-tong & Yu, Dalei & Yau, Kelvin K.W., 2015. "Multilevel cumulative logistic regression model with random effects: Application to British social attitudes panel survey data," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 173-186.
    4. Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
    5. Joe, Harry, 2008. "Accuracy of Laplace approximation for discrete response mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5066-5074, August.
    6. Sumanta Adhya & Tathagata Banerjee & Gaurangadeb Chattopadhyay, 2012. "Inference on finite population categorical response: nonparametric regression-based predictive approach," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 69-98, January.
    7. Lara Maleyeff & Fan Li & Sebastien Haneuse & Rui Wang, 2023. "Assessing exposure‐time treatment effect heterogeneity in stepped‐wedge cluster randomized trials," Biometrics, The International Biometric Society, vol. 79(3), pages 2551-2564, September.
    8. Meza, Cristian & Jaffrézic, Florence & Foulley, Jean-Louis, 2009. "Estimation in the probit normal model for binary outcomes using the SAEM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1350-1360, February.
    9. Noh, Maengseok & Wu, Lang & Lee, Youngjo, 2012. "Hierarchical likelihood methods for nonlinear and generalized linear mixed models with missing data and measurement errors in covariates," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 42-51.
    10. Lee, Woojoo & Shi, Jian Qing & Lee, Youngjo, 2010. "Approximate conditional inference in mixed-effects models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 173-184, January.
    11. Youngjo Lee & Myoungjin Jang & Woojoo Lee, 2011. "Prediction interval for disease mapping using hierarchical likelihood," Computational Statistics, Springer, vol. 26(1), pages 159-179, March.
    12. Il Do Ha & Liming Xiang & Mengjiao Peng & Jong-Hyeon Jeong & Youngjo Lee, 2020. "Frailty modelling approaches for semi-competing risks data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 109-133, January.
    13. Andersson, Björn & Jin, Shaobo & Zhang, Maoxin, 2023. "Fast estimation of multiple group generalized linear latent variable models for categorical observed variables," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    14. Cho, S.-J. & Rabe-Hesketh, S., 2011. "Alternating imputation posterior estimation of models with crossed random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 12-25, January.
    15. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    16. Jin, Shaobo & Lee, Youngjo, 2024. "Standard error estimates in hierarchical generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    17. Noh, Maengseok & Lee, Youngjo, 2008. "Hierarchical-likelihood approach for nonlinear mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3517-3527, March.
    18. Ruggero Bellio & Nicola Soriani, 2021. "Maximum likelihood estimation based on the Laplace approximation for p2 network regression models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(1), pages 24-41, February.
    19. repec:jss:jstsof:39:i13 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:26:y:2015:i:2:p:519-526.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.