IDEAS home Printed from https://ideas.repec.org/a/oup/beheco/v25y2014i5p1212-1222..html
   My bibliography  Save this article

Maternal lineages best explain the associations of a semisocial marsupial

Author

Listed:
  • Michaela D.J. Blyton
  • David B. Lindenmayer
  • Sam C. Banks

Abstract

Kinship is a key factor that can influence the fitness benefits associated with social behaviors through the operation of kin selection. A species’ patterns of dispersal, and resulting fine-scale spatial genetic structure, can mediate kin selection by altering both the capacity for kin cooperation and the intensity of kin competition. In this study, we used proximity logger collars and multilocus genotypes to investigate how genetic relatedness influences the associations of mountain brushtail possums (Trichosurus cunninghami) in the context of fine-scale spatial genetic structure. We found distinct differences between diurnal and nocturnal associations. Diurnal (den-sharing) associations occurred within a small subset of mainly male–female dyads, whose members were socially pair-bonded. In contrast, nocturnal associations occurred between multiple individuals of both sexes. Spatial proximity was an important factor influencing the nocturnal encounter rate. Further, proximity was associated with relatedness between individuals, a pattern that was stronger among females than males. After proximity was accounted for, we found that possums who shared a mitochondrial haplotype associated more often and for longer during nocturnal activity. By comparison, autosomal nuclear relatedness metrics did not explain associations. This is likely to represent, in part, mother–offspring associations but may also indicate a general preference for associating with familiar individuals. Females also associated for longer than did males, which may be attributed to a combination of kin preference and differences between the sexes in genetic structuring. Thus, this study demonstrates the way social behaviors may be shaped by how kin selection and fine-scale spatial genetic structure interact.

Suggested Citation

  • Michaela D.J. Blyton & David B. Lindenmayer & Sam C. Banks, 2014. "Maternal lineages best explain the associations of a semisocial marsupial," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(5), pages 1212-1222.
  • Handle: RePEc:oup:beheco:v:25:y:2014:i:5:p:1212-1222.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/beheco/aru116
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hadfield, Jarrod D., 2010. "MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i02).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolfgang Goymann & John C. Wingfield, 2014. "Male-to-female testosterone ratios, dimorphism, and life history—what does it really tell us?," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(4), pages 685-699.
    2. I. Albarrán & P. Alonso-González & J. M. Marin, 2017. "Some criticism to a general model in Solvency II: an explanation from a clustering point of view," Empirical Economics, Springer, vol. 52(4), pages 1289-1308, June.
    3. Andrés López-Sepulcre & Sebastiano De Bona & Janne K. Valkonen & Kate D.L. Umbers & Johanna Mappes, 2015. "Item Response Trees: a recommended method for analyzing categorical data in behavioral studies," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(5), pages 1268-1273.
    4. Jesse Shore & Ethan Bernstein & David Lazer, 2014. "Facts and Figuring: An Experimental Investigation of Network Structure and Performance in Information and Solution Spaces," Harvard Business School Working Papers 14-075, Harvard Business School, revised Jun 2014.
    5. Weliton Menário & Wendy J King & Timothée Bonnet & Marco Festa-Bianchet & Loeske E B Kruuk, 2023. "Early-life behavior, survival, and maternal personality in a wild marsupial," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(6), pages 1002-1012.
    6. Bakar, Khandoker Shuvo & Sahu, Sujit K., 2015. "spTimer: Spatio-Temporal Bayesian Modeling Using R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i15).
    7. Parady, Giancarlos & Frei, Andreas & Kowald, Matthias & Guidon, Sergio & Wicki, Michael & van den Berg, Pauline & Carrasco, Juan-Antonio & Arentze, Theo & Timmermans, Harry & Wellman, Barry & Takami, , 2021. "A comparative study of social interaction frequencies among social network members in five countries," Journal of Transport Geography, Elsevier, vol. 90(C).
    8. Amoroso, S., 2013. "Heterogeneity of innovative, collaborative, and productive firm-level processes," Other publications TiSEM f5784a49-7053-401d-855d-1, Tilburg University, School of Economics and Management.
    9. Apergis, Nicholas & Aye, Goodness C. & Barros, Carlos Pestana & Gupta, Rangan & Wanke, Peter, 2015. "Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs," Energy Economics, Elsevier, vol. 51(C), pages 45-53.
    10. Francis K. C. Hui & Samuel Müller & Alan H. Welsh, 2021. "Random Effects Misspecification Can Have Severe Consequences for Random Effects Inference in Linear Mixed Models," International Statistical Review, International Statistical Institute, vol. 89(1), pages 186-206, April.
    11. Mikhail V Matz & Rachel M Wright & James G Scott, 2013. "No Control Genes Required: Bayesian Analysis of qRT-PCR Data," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-12, August.
    12. Saeede Ajorlou & Issac Shams & Kai Yang, 2015. "An analytics approach to designing patient centered medical homes," Health Care Management Science, Springer, vol. 18(1), pages 3-18, March.
    13. Kandt, Jens & Leak, Alistair, 2019. "Examining inclusive mobility through smartcard data: What shall we make of senior citizens' declining bus patronage in the West Midlands?," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    14. Hart, Jordan D. A. & Franks, Daniel Wayne & Brent, Lauren & Weiss, Michael N., 2022. "bisonR - Bayesian Inference of Social Networks with R," OSF Preprints ywu7j, Center for Open Science.
    15. Lenth, Russell V., 2016. "Least-Squares Means: The R Package lsmeans," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i01).
    16. Breitmoser, Yves & Valasek, Justin, 2023. "Why do committees work?," Discussion Paper Series in Economics 18/2023, Norwegian School of Economics, Department of Economics.
    17. Tuomo Jaakkonen & Sami M. Kivelä & Christoph M. Meier & Jukka T. Forsman, 2015. "The use and relative importance of intraspecific and interspecific social information in a bird community," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(1), pages 55-64.
    18. Mohamed M. Mostafa, 2016. "Post-materialism, Religiosity, Political Orientation, Locus of Control and Concern for Global Warming: A Multilevel Analysis Across 40 Nations," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 128(3), pages 1273-1298, September.
    19. Alan A Cohen & Emmanuel Milot & Qing Li & Patrick Bergeron & Roxane Poirier & Francis Dusseault-Bélanger & Tamàs Fülöp & Maxime Leroux & Véronique Legault & E Jeffrey Metter & Linda P Fried & Luigi Fe, 2015. "Detection of a Novel, Integrative Aging Process Suggests Complex Physiological Integration," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-26, March.
    20. Alexander Robitzsch, 2021. "A Comprehensive Simulation Study of Estimation Methods for the Rasch Model," Stats, MDPI, vol. 4(4), pages 1-23, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:25:y:2014:i:5:p:1212-1222.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.