IDEAS home Printed from https://ideas.repec.org/a/ora/journl/v1y2013i1p976-986.html
   My bibliography  Save this article

Prediction Of Corporate Bankruptcy In Romania Through The Use Of Logistic Regression

Author

Listed:
  • Brindescu-Olariu Daniel

    (West University of Timisoara, Faculty of Economics and Business Administration)

  • Golet Ionut

    (West University of Timisoara,)

Abstract

The purpose of this paper is to test weather data from synthetic financial statements publically available in Romania can be employed within a logistic regression model to accurately predict the corporate bankruptcy probability over the economic crisis period. The population initially subjected to our study included all the 26,980 companies from the Timis County that submitted financial statements for 2007 to the public authorities. As this population proved very heterogeneous, we focused on a more homogeneous group, composed of 4,327 companies. The target population was chosen by employing both economical and statistical criterions. The data from the synthetic financial statements was used to build 12 ratios, 5 of which have proven to be significant within a logistic model for predicting corporate bankruptcy. It was clear that other sources of information could help improve the accuracy of the predictions, but these sources are not easily accessible to most of the stakeholders. As the synthetic financial statements are publically available, evaluating their utility in the prediction of corporate bankruptcy was one of the main objectives of this research. The proposed model offers an in-sample overall 70.3% accuracy in the prediction of the bankruptcy event over a 5 - year period, with an out of sample overall accuracy of 67.6%. Under these circumstances, the model is considered to be of immediate practical utility, as it can represent a tool for performing a fast estimation of the bankruptcy probability of a company that fits the profile of the target population. As theoretical contributions, the research proves that the companies that filed for bankruptcy during the crisis period showed signs of weaknesses before the beginning of the crisis. Financial ratios that show relevance in the prediction of corporate bankruptcy at local level have been identified and their correlation with the bankruptcy probability has been evaluated. The model is expected to maintain its accuracy with minimal or no additional calibration for companies from the entire Romanian economy that fit the profile of the target population.

Suggested Citation

  • Brindescu-Olariu Daniel & Golet Ionut, 2013. "Prediction Of Corporate Bankruptcy In Romania Through The Use Of Logistic Regression," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 976-986, July.
  • Handle: RePEc:ora:journl:v:1:y:2013:i:1:p:976-986
    as

    Download full text from publisher

    File URL: http://anale.steconomiceuoradea.ro/volume/2013/n1/103.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    2. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    3. Kahya, Emel & Theodossiou, Panayiotis, 1999. "Predicting Corporate Financial Distress: A Time-Series CUSUM Methodology," Review of Quantitative Finance and Accounting, Springer, vol. 13(4), pages 323-345, December.
    4. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    5. Radu Stroe & Nicoleta Barbuta-Misu, 2010. "Predicting the Financial Performance of the Building Sector Enterprises -- Case Study of Galati County (Romania)," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 2(1), pages 029-039, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khaled Halteh & Kuldeep Kumar & Adrian Gepp, 2018. "Using Cutting-Edge Tree-Based Stochastic Models to Predict Credit Risk," Risks, MDPI, vol. 6(2), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Sareen & Sudhi Sharma, 2022. "Assessing Financial Distress and Predicting Stock Prices of Automotive Sector: Robustness of Altman Z-score," Vision, , vol. 26(1), pages 11-24, March.
    2. Elisa Ughetto & Andrea Vezzulli, 2011. "What role can mutual guarantee consortia play for financing innovation? A firm-level study for Italy," International Journal of Banking, Accounting and Finance, Inderscience Enterprises Ltd, vol. 3(4), pages 294-319.
    3. Nicoleta Barbuta-Misu, 2012. "Aggregated Index for Modelling the Influence of Financial Variables on Enterprise Performance," EuroEconomica, Danubius University of Galati, issue 2(31), pages 155-165, May.
    4. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    5. Layla Khoja & Maxwell Chipulu & Ranadeva Jayasekera, 2016. "Analysing corporate insolvency in the Gulf Cooperation Council using logistic regression and multidimensional scaling," Review of Quantitative Finance and Accounting, Springer, vol. 46(3), pages 483-518, April.
    6. Alberto Tron & Maurizio Dallocchio & Salvatore Ferri & Federico Colantoni, 2023. "Corporate governance and financial distress: lessons learned from an unconventional approach," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(2), pages 425-456, June.
    7. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    8. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    9. Suzan Hol, 2006. "The influence of the business cycle on bankruptcy probability," Discussion Papers 466, Statistics Norway, Research Department.
    10. Pavol Durana & Lucia Michalkova & Andrej Privara & Josef Marousek & Milos Tumpach, 2021. "Does the life cycle affect earnings management and bankruptcy?," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 425-461, June.
    11. Chiara Pederzoli & Grid Thoma & Costanza Torricelli, 2013. "Modelling Credit Risk for Innovative SMEs: the Role of Innovation Measures," Journal of Financial Services Research, Springer;Western Finance Association, vol. 44(1), pages 111-129, August.
    12. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    13. E. Fedorova A. & M. Chukhlantseva A. & D. Chekrizov V. & ЕЛЕНА Федорова АНАТОЛЬЕВНА & МАРИЯ Чухланцева АЛЕКСАНДРОВНА & ДМИТРИЙ Чекризов ВАСИЛЬЕВИЧ, 2017. "Нормативные значения коэффициентов финансовой устойчивости: особенности видов экономической деятельности // Normative Values of Financial Stability Ratios: Industry-Specific Features," Управленческие науки // Management Science, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 7(2), pages 44-55.
    14. Eling, Martin & Jia, Ruo, 2018. "Business failure, efficiency, and volatility: Evidence from the European insurance industry," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 58-76.
    15. Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
    16. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    17. Lillian Cheung & Amnon Levy, 1998. "An integrative analysis of business bankruptcy in Australia," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 22(2), pages 149-167, June.
    18. Campa, Domenico & Camacho-Miñano, María-del-Mar, 2015. "The impact of SME’s pre-bankruptcy financial distress on earnings management tools," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 222-234.
    19. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    20. Li, Hui & Sun, Jie, 2009. "Hybridizing principles of the Electre method with case-based reasoning for data mining: Electre-CBR-I and Electre-CBR-II," European Journal of Operational Research, Elsevier, vol. 197(1), pages 214-224, August.

    More about this item

    Keywords

    bankruptcy; financial statement analysis; economic crisis; logistic regresion; accuracy rate;
    All these keywords.

    JEL classification:

    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • M41 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting - - - Accounting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ora:journl:v:1:y:2013:i:1:p:976-986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catalin ZMOLE The email address of this maintainer does not seem to be valid anymore. Please ask Catalin ZMOLE to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/feoraro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.