IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v605y2022i7908d10.1038_s41586-022-04644-x.html
   My bibliography  Save this article

Agriculture and climate change are reshaping insect biodiversity worldwide

Author

Listed:
  • Charlotte L. Outhwaite

    (University College London)

  • Peter McCann

    (University College London)

  • Tim Newbold

    (University College London)

Abstract

Several previous studies have investigated changes in insect biodiversity, with some highlighting declines and others showing turnover in species composition without net declines1–5. Although research has shown that biodiversity changes are driven primarily by land-use change and increasingly by climate change6,7, the potential for interaction between these drivers and insect biodiversity on the global scale remains unclear. Here we show that the interaction between indices of historical climate warming and intensive agricultural land use is associated with reductions of almost 50% in the abundance and 27% in the number of species within insect assemblages relative to those in less-disturbed habitats with lower rates of historical climate warming. These patterns are particularly evident in the tropical realm, whereas some positive responses of biodiversity to climate change occur in non-tropical regions in natural habitats. A high availability of nearby natural habitat often mitigates reductions in insect abundance and richness associated with agricultural land use and substantial climate warming but only in low-intensity agricultural systems. In such systems, in which high levels (75% cover) of natural habitat are available, abundance and richness were reduced by 7% and 5%, respectively, compared with reductions of 63% and 61% in places where less natural habitat is present (25% cover). Our results show that insect biodiversity will probably benefit from mitigating climate change, preserving natural habitat within landscapes and reducing the intensity of agriculture.

Suggested Citation

  • Charlotte L. Outhwaite & Peter McCann & Tim Newbold, 2022. "Agriculture and climate change are reshaping insect biodiversity worldwide," Nature, Nature, vol. 605(7908), pages 97-102, May.
  • Handle: RePEc:nat:nature:v:605:y:2022:i:7908:d:10.1038_s41586-022-04644-x
    DOI: 10.1038/s41586-022-04644-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04644-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04644-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix Neff & Fränzi Korner-Nievergelt & Emmanuel Rey & Matthias Albrecht & Kurt Bollmann & Fabian Cahenzli & Yannick Chittaro & Martin M. Gossner & Carlos Martínez-Núñez & Eliane S. Meier & Christian , 2022. "Different roles of concurring climate and regional land-use changes in past 40 years’ insect trends," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Yaqiu Zhu & Bangyou Zheng & Qiyou Luo & Weihua Jiao & Yadong Yang, 2023. "Uncovering the Drivers and Regional Variability of Cotton Yield in China," Agriculture, MDPI, vol. 13(11), pages 1-16, November.
    3. Bonnet, Céline & Coinon, Marine, 2024. "Environmental co-benefits of health policies to reduce meat consumption: A narrative review," Health Policy, Elsevier, vol. 143(C).
    4. Mark K. L. Wong & Raphael K. Didham, 2024. "Global meta-analysis reveals overall higher nocturnal than diurnal activity in insect communities," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Jessika Konrad & Ralph Platen & Michael Glemnitz, 2024. "The Effects of Vegetation Structure and Timber Harvesting on Ground Beetle (Col.: Carabidae) and Arachnid Communities (Arach.: Araneae, Opiliones) in Short-Rotation Coppices," Land, MDPI, vol. 13(2), pages 1-30, January.
    6. Alexandru-Mihai Pintilioaie & Beatrice Daniela Filote & Lucian Sfîcă & Emanuel Ștefan Baltag, 2022. "Weather Influence on Native and Alien Mantis Dynamics and Their Abundance in the Current Climate Change Conditions," Sustainability, MDPI, vol. 14(23), pages 1-10, November.
    7. Daijun Liu & Philipp Semenchuk & Franz Essl & Bernd Lenzner & Dietmar Moser & Tim M. Blackburn & Phillip Cassey & Dino Biancolini & César Capinha & Wayne Dawson & Ellie E. Dyer & Benoit Guénard & Evan, 2023. "The impact of land use on non-native species incidence and number in local assemblages worldwide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Xinbei Huang & Chengming Ye & Hongyu Tao & Junjie Zou & Yuzhan Zhou & Shufan Zheng, 2024. "Integrating Future Multi-Scenarios to Evaluate the Effectiveness of Ecological Restoration: A Case Study of the Yellow River Basin," Land, MDPI, vol. 13(7), pages 1-19, July.
    9. Ujjwal Layek & Nitol Krishna Baghira & Alokesh Das & Arijit Kundu & Prakash Karmakar, 2023. "Dependency of Crops on Pollinators and Pollination Deficits: An Approach to Measurement Considering the Influence of Various Reproductive Traits," Agriculture, MDPI, vol. 13(8), pages 1-11, August.
    10. Andrew J. Suggitt & Christopher J. Wheatley & Paula Aucott & Colin M. Beale & Richard Fox & Jane K. Hill & Nick J. B. Isaac & Blaise Martay & Humphrey Southall & Chris D. Thomas & Kevin J. Walker & Al, 2023. "Linking climate warming and land conversion to species’ range changes across Great Britain," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Raja Imran Hussain & Daniela Ablinger & Walter Starz & Jürgen Kurt Friedel & Thomas Frank, 2024. "Understanding the Dynamics of Sex-Specific Responses Driven by Grassland Management: Using Syrphids as a Model Insect Group," Land, MDPI, vol. 13(2), pages 1-17, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:605:y:2022:i:7908:d:10.1038_s41586-022-04644-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.