IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v600y2021i7889d10.1038_s41586-021-04152-4.html
   My bibliography  Save this article

The conformational cycle of prestin underlies outer-hair cell electromotility

Author

Listed:
  • Navid Bavi

    (The University of Chicago)

  • Michael David Clark

    (The University of Chicago)

  • Gustavo F. Contreras

    (The University of Chicago)

  • Rong Shen

    (The University of Chicago)

  • Bharat G. Reddy

    (The University of Chicago
    Rectify Pharmaceuticals)

  • Wieslawa Milewski

    (The University of Chicago)

  • Eduardo Perozo

    (The University of Chicago
    The University of Chicago)

Abstract

The voltage-dependent motor protein prestin (also known as SLC26A5) is responsible for the electromotive behaviour of outer-hair cells and underlies the cochlear amplifier1. Knockout or impairment of prestin causes severe hearing loss2–5. Despite the key role of prestin in hearing, the mechanism by which mammalian prestin senses voltage and transduces it into cellular-scale movements (electromotility) is poorly understood. Here we determined the structure of dolphin prestin in six distinct states using single-particle cryo-electron microscopy. Our structural and functional data suggest that prestin adopts a unique and complex set of states, tunable by the identity of bound anions (Cl− or SO42−). Salicylate, a drug that can cause reversible hearing loss, competes for the anion-binding site of prestin, and inhibits its function by immobilizing prestin in a new conformation. Our data suggest that the bound anion together with its coordinating charged residues and helical dipole act as a dynamic voltage sensor. An analysis of all of the anion-dependent conformations reveals how structural rearrangements in the voltage sensor are coupled to conformational transitions at the protein–membrane interface, suggesting a previously undescribed mechanism of area expansion. Visualization of the electromotility cycle of prestin distinguishes the protein from the closely related SLC26 anion transporters, highlighting the basis for evolutionary specialization of the mammalian cochlear amplifier at a high resolution.

Suggested Citation

  • Navid Bavi & Michael David Clark & Gustavo F. Contreras & Rong Shen & Bharat G. Reddy & Wieslawa Milewski & Eduardo Perozo, 2021. "The conformational cycle of prestin underlies outer-hair cell electromotility," Nature, Nature, vol. 600(7889), pages 553-558, December.
  • Handle: RePEc:nat:nature:v:600:y:2021:i:7889:d:10.1038_s41586-021-04152-4
    DOI: 10.1038/s41586-021-04152-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04152-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04152-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Makoto F. Kuwabara & Bassam G. Haddad & Dominik Lenz-Schwab & Julia Hartmann & Piersilvio Longo & Britt-Marie Huckschlag & Anneke Fuß & Annalisa Questino & Thomas K. Berger & Jan-Philipp Machtens & Do, 2023. "Elevator-like movements of prestin mediate outer hair cell electromotility," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Qianying Liu & Xiang Zhang & Hui Huang & Yuxin Chen & Fang Wang & Aihua Hao & Wuqiang Zhan & Qiyu Mao & Yuxia Hu & Lin Han & Yifang Sun & Meng Zhang & Zhimin Liu & Geng-Lin Li & Weijia Zhang & Yilai S, 2023. "Asymmetric pendrin homodimer reveals its molecular mechanism as anion exchanger," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Sepehr Dehghani-Ghahnaviyeh & Zhiyu Zhao & Emad Tajkhorshid, 2022. "Lipid-mediated prestin organization in outer hair cell membranes and its implications in sound amplification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Yuanyue Shan & Mengmeng Zhang & Meiyu Chen & Xinyi Guo & Ying Li & Mingfeng Zhang & Duanqing Pei, 2024. "Activation mechanisms of dimeric mechanosensitive OSCA/TMEM63 channels," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Benedikt T. Kuhn & Jonathan Zöller & Iwan Zimmermann & Tim Gemeinhardt & Dogukan H. Özkul & Julian D. Langer & Markus A. Seeger & Eric R. Geertsma, 2024. "Interdomain-linkers control conformational transitions in the SLC23 elevator transporter UraA," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Haon Futamata & Masahiro Fukuda & Rie Umeda & Keitaro Yamashita & Atsuhiro Tomita & Satoe Takahashi & Takafumi Shikakura & Shigehiko Hayashi & Tsukasa Kusakizako & Tomohiro Nishizawa & Kazuaki Homma &, 2022. "Cryo-EM structures of thermostabilized prestin provide mechanistic insights underlying outer hair cell electromotility," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Mingfeng Zhang & Yuanyue Shan & Charles D. Cox & Duanqing Pei, 2023. "A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Lie Wang & Anthony Hoang & Eva Gil-Iturbe & Arthur Laganowsky & Matthias Quick & Ming Zhou, 2024. "Mechanism of anion exchange and small-molecule inhibition of pendrin," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Wenxin Hu & Alex Song & Hongjin Zheng, 2024. "Substrate binding plasticity revealed by Cryo-EM structures of SLC26A2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:600:y:2021:i:7889:d:10.1038_s41586-021-04152-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.