IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38303-0.html
   My bibliography  Save this article

Asymmetric pendrin homodimer reveals its molecular mechanism as anion exchanger

Author

Listed:
  • Qianying Liu

    (Fudan University)

  • Xiang Zhang

    (Fudan University)

  • Hui Huang

    (Fudan University)

  • Yuxin Chen

    (Fudan University
    Fudan University
    Fudan University)

  • Fang Wang

    (Fudan University
    Fudan University
    Fudan University)

  • Aihua Hao

    (Fudan University)

  • Wuqiang Zhan

    (Fudan University)

  • Qiyu Mao

    (Fudan University)

  • Yuxia Hu

    (Fudan University)

  • Lin Han

    (Fudan University)

  • Yifang Sun

    (Fudan University)

  • Meng Zhang

    (Fudan University)

  • Zhimin Liu

    (Fudan University)

  • Geng-Lin Li

    (Fudan University
    Fudan University
    Fudan University)

  • Weijia Zhang

    (Fudan University)

  • Yilai Shu

    (Fudan University
    Fudan University
    Fudan University
    Fudan University)

  • Lei Sun

    (Fudan University
    Shanghai Institute of Infectious Disease and Biosecurity
    Shanghai Key Laboratory of Medical Epigenetics)

  • Zhenguo Chen

    (Fudan University
    Shanghai Institute of Infectious Disease and Biosecurity
    Shanghai Key Laboratory of Medical Epigenetics)

Abstract

Pendrin (SLC26A4) is an anion exchanger expressed in the apical membranes of selected epithelia. Pendrin ablation causes Pendred syndrome, a genetic disorder associated with sensorineural hearing loss, hypothyroid goiter, and reduced blood pressure. However its molecular structure has remained unknown, limiting our understanding of the structural basis of transport. Here, we determine the cryo-electron microscopy structures of mouse pendrin with symmetric and asymmetric homodimer conformations. The asymmetric homodimer consists of one inward-facing protomer and the other outward-facing protomer, representing coincident uptake and secretion- a unique state of pendrin as an electroneutral exchanger. The multiple conformations presented here provide an inverted alternate-access mechanism for anion exchange. The structural and functional data presented here disclose the properties of an anion exchange cleft and help understand the importance of disease-associated variants, which will shed light on the pendrin exchange mechanism.

Suggested Citation

  • Qianying Liu & Xiang Zhang & Hui Huang & Yuxin Chen & Fang Wang & Aihua Hao & Wuqiang Zhan & Qiyu Mao & Yuxia Hu & Lin Han & Yifang Sun & Meng Zhang & Zhimin Liu & Geng-Lin Li & Weijia Zhang & Yilai S, 2023. "Asymmetric pendrin homodimer reveals its molecular mechanism as anion exchanger," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38303-0
    DOI: 10.1038/s41467-023-38303-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38303-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38303-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carmen Butan & Qiang Song & Jun-Ping Bai & Winston J. T. Tan & Dhasakumar Navaratnam & Joseph Santos-Sacchi, 2022. "Single particle cryo-EM structure of the outer hair cell motor protein prestin," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Haon Futamata & Masahiro Fukuda & Rie Umeda & Keitaro Yamashita & Atsuhiro Tomita & Satoe Takahashi & Takafumi Shikakura & Shigehiko Hayashi & Tsukasa Kusakizako & Tomohiro Nishizawa & Kazuaki Homma &, 2022. "Cryo-EM structures of thermostabilized prestin provide mechanistic insights underlying outer hair cell electromotility," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Feiran Lu & Shuo Li & Yang Jiang & Jing Jiang & He Fan & Guifeng Lu & Dong Deng & Shangyu Dang & Xu Zhang & Jiawei Wang & Nieng Yan, 2011. "Structure and mechanism of the uracil transporter UraA," Nature, Nature, vol. 472(7342), pages 243-246, April.
    4. Navid Bavi & Michael David Clark & Gustavo F. Contreras & Rong Shen & Bharat G. Reddy & Wieslawa Milewski & Eduardo Perozo, 2021. "The conformational cycle of prestin underlies outer-hair cell electromotility," Nature, Nature, vol. 600(7889), pages 553-558, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Makoto F. Kuwabara & Bassam G. Haddad & Dominik Lenz-Schwab & Julia Hartmann & Piersilvio Longo & Britt-Marie Huckschlag & Anneke Fuß & Annalisa Questino & Thomas K. Berger & Jan-Philipp Machtens & Do, 2023. "Elevator-like movements of prestin mediate outer hair cell electromotility," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Lie Wang & Anthony Hoang & Eva Gil-Iturbe & Arthur Laganowsky & Matthias Quick & Ming Zhou, 2024. "Mechanism of anion exchange and small-molecule inhibition of pendrin," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenxin Hu & Alex Song & Hongjin Zheng, 2024. "Substrate binding plasticity revealed by Cryo-EM structures of SLC26A2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Benedikt T. Kuhn & Jonathan Zöller & Iwan Zimmermann & Tim Gemeinhardt & Dogukan H. Özkul & Julian D. Langer & Markus A. Seeger & Eric R. Geertsma, 2024. "Interdomain-linkers control conformational transitions in the SLC23 elevator transporter UraA," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Haon Futamata & Masahiro Fukuda & Rie Umeda & Keitaro Yamashita & Atsuhiro Tomita & Satoe Takahashi & Takafumi Shikakura & Shigehiko Hayashi & Tsukasa Kusakizako & Tomohiro Nishizawa & Kazuaki Homma &, 2022. "Cryo-EM structures of thermostabilized prestin provide mechanistic insights underlying outer hair cell electromotility," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Lie Wang & Anthony Hoang & Eva Gil-Iturbe & Arthur Laganowsky & Matthias Quick & Ming Zhou, 2024. "Mechanism of anion exchange and small-molecule inhibition of pendrin," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Takaaki A. Kobayashi & Hiroto Shimada & Fumiya K. Sano & Yuzuru Itoh & Sawako Enoki & Yasushi Okada & Tsukasa Kusakizako & Osamu Nureki, 2024. "Dimeric transport mechanism of human vitamin C transporter SVCT1," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Mingxing Wang & Jin He & Shanshan Li & Qianwen Cai & Kaiming Zhang & Ji She, 2023. "Structural basis of vitamin C recognition and transport by mammalian SVCT1 transporter," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Sepehr Dehghani-Ghahnaviyeh & Zhiyu Zhao & Emad Tajkhorshid, 2022. "Lipid-mediated prestin organization in outer hair cell membranes and its implications in sound amplification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Qing Zhang & Liyan Jian & Deqiang Yao & Bing Rao & Ying Xia & Kexin Hu & Shaobai Li & Yafeng Shen & Mi Cao & An Qin & Jie Zhao & Yu Cao, 2023. "The structural basis of the pH-homeostasis mediated by the Cl−/HCO3− exchanger, AE2," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Yuanyue Shan & Mengmeng Zhang & Meiyu Chen & Xinyi Guo & Ying Li & Mingfeng Zhang & Duanqing Pei, 2024. "Activation mechanisms of dimeric mechanosensitive OSCA/TMEM63 channels," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Makoto F. Kuwabara & Bassam G. Haddad & Dominik Lenz-Schwab & Julia Hartmann & Piersilvio Longo & Britt-Marie Huckschlag & Anneke Fuß & Annalisa Questino & Thomas K. Berger & Jan-Philipp Machtens & Do, 2023. "Elevator-like movements of prestin mediate outer hair cell electromotility," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Mingfeng Zhang & Yuanyue Shan & Charles D. Cox & Duanqing Pei, 2023. "A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38303-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.