IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34596-9.html
   My bibliography  Save this article

Lipid-mediated prestin organization in outer hair cell membranes and its implications in sound amplification

Author

Listed:
  • Sepehr Dehghani-Ghahnaviyeh

    (University of Illinois at Urbana-Champaign)

  • Zhiyu Zhao

    (University of Illinois at Urbana-Champaign)

  • Emad Tajkhorshid

    (University of Illinois at Urbana-Champaign)

Abstract

Prestin is a high-density motor protein in the outer hair cells (OHCs), whose conformational response to acoustic signals alters the shape of the cell, thereby playing a major role in sound amplification by the cochlea. Despite recent structures, prestin’s intimate interactions with the membrane, which are central to its function remained unresolved. Here, employing a large set (collectively, more than 0.5 ms) of coarse-grained molecular dynamics simulations, we demonstrate the impact of prestin’s lipid-protein interactions on its organization at densities relevant to the OHCs and its effectiveness in reshaping OHCs. Prestin causes anisotropic membrane deformation, which mediates a preferential membrane organization of prestin where deformation patterns by neighboring copies are aligned constructively. The resulting reduced membrane rigidity is hypothesized to maximize the impact of prestin on OHC reshaping. These results demonstrate a clear case of protein-protein cooperative communication in membrane, purely mediated by interactions with lipids.

Suggested Citation

  • Sepehr Dehghani-Ghahnaviyeh & Zhiyu Zhao & Emad Tajkhorshid, 2022. "Lipid-mediated prestin organization in outer hair cell membranes and its implications in sound amplification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34596-9
    DOI: 10.1038/s41467-022-34596-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34596-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34596-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jing Zheng & Weixing Shen & David Z. Z. He & Kevin B. Long & Laird D. Madison & Peter Dallos, 2000. "Prestin is the motor protein of cochlear outer hair cells," Nature, Nature, vol. 405(6783), pages 149-155, May.
    2. Yung-Ning Chang & Eva A. Jaumann & Katrin Reichel & Julia Hartmann & Dominik Oliver & Gerhard Hummer & Benesh Joseph & Eric R. Geertsma, 2019. "Structural basis for functional interactions in dimers of SLC26 transporters," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Dmitry Gorbunov & Mattia Sturlese & Florian Nies & Murielle Kluge & Massimo Bellanda & Roberto Battistutta & Dominik Oliver, 2014. "Molecular architecture and the structural basis for anion interaction in prestin and SLC26 transporters," Nature Communications, Nature, vol. 5(1), pages 1-13, May.
    4. Navid Bavi & Michael David Clark & Gustavo F. Contreras & Rong Shen & Bharat G. Reddy & Wieslawa Milewski & Eduardo Perozo, 2021. "The conformational cycle of prestin underlies outer-hair cell electromotility," Nature, Nature, vol. 600(7889), pages 553-558, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haon Futamata & Masahiro Fukuda & Rie Umeda & Keitaro Yamashita & Atsuhiro Tomita & Satoe Takahashi & Takafumi Shikakura & Shigehiko Hayashi & Tsukasa Kusakizako & Tomohiro Nishizawa & Kazuaki Homma &, 2022. "Cryo-EM structures of thermostabilized prestin provide mechanistic insights underlying outer hair cell electromotility," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Makoto F. Kuwabara & Bassam G. Haddad & Dominik Lenz-Schwab & Julia Hartmann & Piersilvio Longo & Britt-Marie Huckschlag & Anneke Fuß & Annalisa Questino & Thomas K. Berger & Jan-Philipp Machtens & Do, 2023. "Elevator-like movements of prestin mediate outer hair cell electromotility," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Qianying Liu & Xiang Zhang & Hui Huang & Yuxin Chen & Fang Wang & Aihua Hao & Wuqiang Zhan & Qiyu Mao & Yuxia Hu & Lin Han & Yifang Sun & Meng Zhang & Zhimin Liu & Geng-Lin Li & Weijia Zhang & Yilai S, 2023. "Asymmetric pendrin homodimer reveals its molecular mechanism as anion exchanger," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Lie Wang & Anthony Hoang & Eva Gil-Iturbe & Arthur Laganowsky & Matthias Quick & Ming Zhou, 2024. "Mechanism of anion exchange and small-molecule inhibition of pendrin," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Wenxin Hu & Alex Song & Hongjin Zheng, 2024. "Substrate binding plasticity revealed by Cryo-EM structures of SLC26A2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Mingfeng Zhang & Yuanyue Shan & Charles D. Cox & Duanqing Pei, 2023. "A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34596-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.