IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v600y2021i7889d10.1038_s41586-021-04060-7.html
   My bibliography  Save this article

Anti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccination

Author

Listed:
  • Alice Cho

    (The Rockefeller University)

  • Frauke Muecksch

    (The Rockefeller University)

  • Dennis Schaefer-Babajew

    (The Rockefeller University)

  • Zijun Wang

    (The Rockefeller University)

  • Shlomo Finkin

    (The Rockefeller University)

  • Christian Gaebler

    (The Rockefeller University)

  • Victor Ramos

    (The Rockefeller University)

  • Melissa Cipolla

    (The Rockefeller University)

  • Pilar Mendoza

    (The Rockefeller University)

  • Marianna Agudelo

    (The Rockefeller University)

  • Eva Bednarski

    (The Rockefeller University)

  • Justin DaSilva

    (The Rockefeller University)

  • Irina Shimeliovich

    (The Rockefeller University)

  • Juan Dizon

    (The Rockefeller University)

  • Mridushi Daga

    (The Rockefeller University)

  • Katrina G. Millard

    (The Rockefeller University)

  • Martina Turroja

    (The Rockefeller University)

  • Fabian Schmidt

    (The Rockefeller University)

  • Fengwen Zhang

    (The Rockefeller University)

  • Tarek Ben Tanfous

    (The Rockefeller University)

  • Mila Jankovic

    (The Rockefeller University)

  • Thiago Y. Oliveria

    (The Rockefeller University)

  • Anna Gazumyan

    (The Rockefeller University)

  • Marina Caskey

    (The Rockefeller University)

  • Paul D. Bieniasz

    (The Rockefeller University
    Howard Hughes Medical Institute)

  • Theodora Hatziioannou

    (The Rockefeller University)

  • Michel C. Nussenzweig

    (The Rockefeller University
    Howard Hughes Medical Institute)

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection produces B cell responses that continue to evolve for at least a year. During that time, memory B cells express increasingly broad and potent antibodies that are resistant to mutations found in variants of concern1. As a result, vaccination of coronavirus disease 2019 (COVID-19) convalescent individuals with currently available mRNA vaccines produces high levels of plasma neutralizing activity against all variants tested1,2. Here we examine memory B cell evolution five months after vaccination with either Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) mRNA vaccine in a cohort of SARS-CoV-2-naive individuals. Between prime and boost, memory B cells produce antibodies that evolve increased neutralizing activity, but there is no further increase in potency or breadth thereafter. Instead, memory B cells that emerge five months after vaccination of naive individuals express antibodies that are similar to those that dominate the initial response. While individual memory antibodies selected over time by natural infection have greater potency and breadth than antibodies elicited by vaccination, the overall neutralizing potency of plasma is greater following vaccination. These results suggest that boosting vaccinated individuals with currently available mRNA vaccines will increase plasma neutralizing activity but may not produce antibodies with equivalent breadth to those obtained by vaccinating convalescent individuals.

Suggested Citation

  • Alice Cho & Frauke Muecksch & Dennis Schaefer-Babajew & Zijun Wang & Shlomo Finkin & Christian Gaebler & Victor Ramos & Melissa Cipolla & Pilar Mendoza & Marianna Agudelo & Eva Bednarski & Justin DaSi, 2021. "Anti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccination," Nature, Nature, vol. 600(7889), pages 517-522, December.
  • Handle: RePEc:nat:nature:v:600:y:2021:i:7889:d:10.1038_s41586-021-04060-7
    DOI: 10.1038/s41586-021-04060-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04060-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04060-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milja Belik & Pinja Jalkanen & Rickard Lundberg & Arttu Reinholm & Larissa Laine & Elina Väisänen & Marika Skön & Paula A. Tähtinen & Lauri Ivaska & Sari H. Pakkanen & Hanni K. Häkkinen & Eeva Ortamo , 2022. "Comparative analysis of COVID-19 vaccine responses and third booster dose-induced neutralizing antibodies against Delta and Omicron variants," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Lorenza Bellusci & Gabrielle Grubbs & Fatema Tuz Zahra & David Forgacs & Hana Golding & Ted M. Ross & Surender Khurana, 2022. "Antibody affinity and cross-variant neutralization of SARS-CoV-2 Omicron BA.1, BA.2 and BA.3 following third mRNA vaccination," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Chaim A. Schramm & Damee Moon & Lowrey Peyton & Noemia S. Lima & Christian Wake & Kristin L. Boswell & Amy R. Henry & Farida Laboune & David Ambrozak & Samuel W. Darko & I-Ting Teng & Kathryn E. Fould, 2023. "Interaction dynamics between innate and adaptive immune cells responding to SARS-CoV-2 vaccination in non-human primates," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Eva-Maria Jacobsen & Dorit Fabricius & Magdalena Class & Fernando Topfstedt & Raquel Lorenzetti & Iga Janowska & Franziska Schmidt & Julian Staniek & Maria Zernickel & Thomas Stamminger & Andrea N. Di, 2022. "High antibody levels and reduced cellular response in children up to one year after SARS-CoV-2 infection," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Leander Witte & Viren A. Baharani & Fabian Schmidt & Zijun Wang & Alice Cho & Raphael Raspe & Camila Guzman-Cardozo & Frauke Muecksch & Marie Canis & Debby J. Park & Christian Gaebler & Marina Caskey , 2023. "Epistasis lowers the genetic barrier to SARS-CoV-2 neutralizing antibody escape," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Laura Pérez-Alós & Jose Juan Almagro Armenteros & Johannes Roth Madsen & Cecilie Bo Hansen & Ida Jarlhelt & Sebastian Rask Hamm & Line Dam Heftdal & Mia Marie Pries-Heje & Dina Leth Møller & Kamille F, 2022. "Modeling of waning immunity after SARS-CoV-2 vaccination and influencing factors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:600:y:2021:i:7889:d:10.1038_s41586-021-04060-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.