IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v588y2020i7837d10.1038_s41586-020-2971-8.html
   My bibliography  Save this article

The gut microbiota is associated with immune cell dynamics in humans

Author

Listed:
  • Jonas Schluter

    (NYU Langone Health
    Memorial Sloan Kettering Cancer Center)

  • Jonathan U. Peled

    (Memorial Sloan Kettering Cancer Center
    Weill Cornell Medical College)

  • Bradford P. Taylor

    (Memorial Sloan Kettering Cancer Center)

  • Kate A. Markey

    (Memorial Sloan Kettering Cancer Center
    Weill Cornell Medical College)

  • Melody Smith

    (Memorial Sloan Kettering Cancer Center
    Weill Cornell Medical College)

  • Ying Taur

    (Sloan Kettering Institute)

  • Rene Niehus

    (Harvard University, T. H. Chan School of Public Health)

  • Anna Staffas

    (University of Gothenburg)

  • Anqi Dai

    (Memorial Sloan Kettering Cancer Center)

  • Emily Fontana

    (Sloan Kettering Institute)

  • Luigi A. Amoretti

    (Sloan Kettering Institute)

  • Roberta J. Wright

    (Sloan Kettering Institute)

  • Sejal Morjaria

    (Sloan Kettering Institute)

  • Maly Fenelus

    (Memorial Sloan Kettering Cancer Center)

  • Melissa S. Pessin

    (Memorial Sloan Kettering Cancer Center)

  • Nelson J. Chao

    (Duke University School of Medicine)

  • Meagan Lew

    (Duke University School of Medicine)

  • Lauren Bohannon

    (Duke University School of Medicine)

  • Amy Bush

    (Duke University School of Medicine)

  • Anthony D. Sung

    (Duke University School of Medicine)

  • Tobias M. Hohl

    (Sloan Kettering Institute)

  • Miguel-Angel Perales

    (Memorial Sloan Kettering Cancer Center
    Weill Cornell Medical College)

  • Marcel R. M. Brink

    (Memorial Sloan Kettering Cancer Center
    Weill Cornell Medical College)

  • Joao B. Xavier

    (Memorial Sloan Kettering Cancer Center)

Abstract

The gut microbiota influences development1–3 and homeostasis4–7 of the mammalian immune system, and is associated with human inflammatory8 and immune diseases9,10 as well as responses to immunotherapy11–14. Nevertheless, our understanding of how gut bacteria modulate the immune system remains limited, particularly in humans, where the difficulty of direct experimentation makes inference challenging. Here we study hundreds of hospitalized—and closely monitored—patients with cancer receiving haematopoietic cell transplantation as they recover from chemotherapy and stem-cell engraftment. This aggressive treatment causes large shifts in both circulatory immune cell and microbiota populations, enabling the relationships between the two to be studied simultaneously. Analysis of observed daily changes in circulating neutrophil, lymphocyte and monocyte counts and more than 10,000 longitudinal microbiota samples revealed consistent associations between gut bacteria and immune cell dynamics. High-resolution clinical metadata and Bayesian inference allowed us to compare the effects of bacterial genera in relation to those of immunomodulatory medications, revealing a considerable influence of the gut microbiota—together and over time—on systemic immune cell dynamics. Our analysis establishes and quantifies the link between the gut microbiota and the human immune system, with implications for microbiota-driven modulation of immunity.

Suggested Citation

  • Jonas Schluter & Jonathan U. Peled & Bradford P. Taylor & Kate A. Markey & Melody Smith & Ying Taur & Rene Niehus & Anna Staffas & Anqi Dai & Emily Fontana & Luigi A. Amoretti & Roberta J. Wright & Se, 2020. "The gut microbiota is associated with immune cell dynamics in humans," Nature, Nature, vol. 588(7837), pages 303-307, December.
  • Handle: RePEc:nat:nature:v:588:y:2020:i:7837:d:10.1038_s41586-020-2971-8
    DOI: 10.1038/s41586-020-2971-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2971-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2971-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Lachance & Karine Robitaille & Jalal Laaraj & Nikunj Gevariya & Thibault V. Varin & Andrei Feldiorean & Fanny Gaignier & Isabelle Bourdeau Julien & Hui Wen Xu & Tarek Hallal & Jean-François Pe, 2024. "The gut microbiome-prostate cancer crosstalk is modulated by dietary polyunsaturated long-chain fatty acids," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Pai Wang & Xin Yang & Luyao Zhang & Sha Sha & Juan Huang & Jian Peng & Jianlei Gu & James Alexander Pearson & Youjia Hu & Hongyu Zhao & F. Susan Wong & Quan Wang & Li Wen, 2024. "Tlr9 deficiency in B cells leads to obesity by promoting inflammation and gut dysbiosis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Lucie Bernard-Raichon & Mericien Venzon & Jon Klein & Jordan E. Axelrad & Chenzhen Zhang & Alexis P. Sullivan & Grant A. Hussey & Arnau Casanovas-Massana & Maria G. Noval & Ana M. Valero-Jimenez & Jua, 2022. "Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Shengbo Wu & Jie Feng & Chunjiang Liu & Hao Wu & Zekai Qiu & Jianjun Ge & Shuyang Sun & Xia Hong & Yukun Li & Xiaona Wang & Aidong Yang & Fei Guo & Jianjun Qiao, 2022. "Machine learning aided construction of the quorum sensing communication network for human gut microbiota," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Pengchao Zhao & Xianfeng Xia & Xiayi Xu & Kevin Kai Chung Leung & Aliza Rai & Yingrui Deng & Boguang Yang & Huasheng Lai & Xin Peng & Peng Shi & Honglu Zhang & Philip Wai Yan Chiu & Liming Bian, 2021. "Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Alice Risely & Kerstin Wilhelm & Tim Clutton-Brock & Marta B. Manser & Simone Sommer, 2021. "Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Lauren Stern & Helen M. McGuire & Selmir Avdic & Barbara Fazekas de St Groth & David Gottlieb & Allison Abendroth & Emily Blyth & Barry Slobedman, 2022. "Immunoprofiling reveals cell subsets associated with the trajectory of cytomegalovirus reactivation post stem cell transplantation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Juan Salazar & Pablo Durán & María P. Díaz & Maricarmen Chacín & Raquel Santeliz & Edgardo Mengual & Emma Gutiérrez & Xavier León & Andrea Díaz & Marycarlota Bernal & Daniel Escalona & Luis Alberto Pa, 2023. "Exploring the Relationship between the Gut Microbiota and Ageing: A Possible Age Modulator," IJERPH, MDPI, vol. 20(10), pages 1-24, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:588:y:2020:i:7837:d:10.1038_s41586-020-2971-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.