IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v574y2019i7776d10.1038_s41586-019-1591-7.html
   My bibliography  Save this article

Evidence of high-temperature exciton condensation in two-dimensional atomic double layers

Author

Listed:
  • Zefang Wang

    (Cornell University)

  • Daniel A. Rhodes

    (Columbia University)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • James C. Hone

    (Columbia University)

  • Jie Shan

    (Cornell University
    Cornell University
    Kavli Institute at Cornell for Nanoscale Science)

  • Kin Fai Mak

    (Cornell University
    Cornell University
    Kavli Institute at Cornell for Nanoscale Science)

Abstract

A Bose–Einstein condensate is the ground state of a dilute gas of bosons, such as atoms cooled to temperatures close to absolute zero1. With much smaller mass, excitons (bound electron–hole pairs) are expected to condense at considerably higher temperatures2–7. Two-dimensional van der Waals semiconductors with very strong exciton binding are ideal systems for the study of high-temperature exciton condensation. Here we study electrically generated interlayer excitons in MoSe2–WSe2 atomic double layers with a density of up to 1012 excitons per square centimetre. The interlayer tunnelling current depends only on the exciton density, which is indicative of correlated electron–hole pair tunnelling8. Strong electroluminescence arises when a hole tunnels from WSe2 to recombine with an electron in MoSe2. We observe a critical threshold dependence of the electroluminescence intensity on exciton density, accompanied by super-Poissonian photon statistics near the threshold, and a large electroluminescence enhancement with a narrow peak at equal electron and hole densities. The phenomenon persists above 100 kelvin, which is consistent with the predicted critical condensation temperature9–12. Our study provides evidence for interlayer exciton condensation in two-dimensional atomic double layers and opens up opportunities for exploring condensate-based optoelectronics and exciton-mediated high-temperature superconductivity13.

Suggested Citation

  • Zefang Wang & Daniel A. Rhodes & Kenji Watanabe & Takashi Taniguchi & James C. Hone & Jie Shan & Kin Fai Mak, 2019. "Evidence of high-temperature exciton condensation in two-dimensional atomic double layers," Nature, Nature, vol. 574(7776), pages 76-80, October.
  • Handle: RePEc:nat:nature:v:574:y:2019:i:7776:d:10.1038_s41586-019-1591-7
    DOI: 10.1038/s41586-019-1591-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1591-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1591-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruoming Peng & Adina Ripin & Yusen Ye & Jiayi Zhu & Changming Wu & Seokhyeong Lee & Huan Li & Takashi Taniguchi & Kenji Watanabe & Ting Cao & Xiaodong Xu & Mo Li, 2022. "Long-range transport of 2D excitons with acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Meng Zhao & Zhongjie Wang & Lu Liu & Chunzheng Wang & Cheng-Yen Liu & Fang Yang & Hua Wu & Chunlei Gao, 2024. "Atomic-scale visualization of the interlayer Rydberg exciton complex in moiré heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Hanlin Fang & Qiaoling Lin & Yi Zhang & Joshua Thompson & Sanshui Xiao & Zhipei Sun & Ermin Malic & Saroj P. Dash & Witlef Wieczorek, 2023. "Localization and interaction of interlayer excitons in MoSe2/WSe2 heterobilayers," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Andrew Y. Joe & Andrés M. Mier Valdivia & Luis A. Jauregui & Kateryna Pistunova & Dapeng Ding & You Zhou & Giovanni Scuri & Kristiaan De Greve & Andrey Sushko & Bumho Kim & Takashi Taniguchi & Kenji W, 2024. "Controlled interlayer exciton ionization in an electrostatic trap in atomically thin heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Pablo Hernández López & Sebastian Heeg & Christoph Schattauer & Sviatoslav Kovalchuk & Abhijeet Kumar & Douglas J. Bock & Jan N. Kirchhof & Bianca Höfer & Kyrylo Greben & Denis Yagodkin & Lukas Linhar, 2022. "Strain control of hybridization between dark and localized excitons in a 2D semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Lingyun Tang & Zhongquan Mao & Chutian Wang & Qi Fu & Chen Wang & Yichi Zhang & Jingyi Shen & Yuefeng Yin & Bin Shen & Dayong Tan & Qian Li & Yonggang Wang & Nikhil V. Medhekar & Jie Wu & Huiqiu Yuan , 2023. "Giant piezoresistivity in a van der Waals material induced by intralayer atomic motions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Yesenia A. García Jomaso & Brenda Vargas & David Ley Domínguez & Román J. Armenta-Rico & Huziel E. Sauceda & César L. Ordoñez-Romero & Hugo A. Lara-García & Arturo Camacho-Guardian & Giuseppe Pirrucci, 2024. "Intercavity polariton slows down dynamics in strongly coupled cavities," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Qiaoling Lin & Hanlin Fang & Alexei Kalaboukhov & Yuanda Liu & Yi Zhang & Moritz Fischer & Juntao Li & Joakim Hagel & Samuel Brem & Ermin Malic & Nicolas Stenger & Zhipei Sun & Martijn Wubs & Sanshui , 2024. "Moiré-engineered light-matter interactions in MoS2/WSe2 heterobilayers at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Zhen Lian & Dongxue Chen & Lei Ma & Yuze Meng & Ying Su & Li Yan & Xiong Huang & Qiran Wu & Xinyue Chen & Mark Blei & Takashi Taniguchi & Kenji Watanabe & Sefaattin Tongay & Chuanwei Zhang & Yong-Tao , 2023. "Quadrupolar excitons and hybridized interlayer Mott insulator in a trilayer moiré superlattice," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Qiang Gao & Yang-hao Chan & Yuzhe Wang & Haotian Zhang & Pu Jinxu & Shengtao Cui & Yichen Yang & Zhengtai Liu & Dawei Shen & Zhe Sun & Juan Jiang & Tai C. Chiang & Peng Chen, 2023. "Evidence of high-temperature exciton condensation in a two-dimensional semimetal," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    12. Elena Blundo & Federico Tuzi & Salvatore Cianci & Marzia Cuccu & Katarzyna Olkowska-Pucko & Łucja Kipczak & Giorgio Contestabile & Antonio Miriametro & Marco Felici & Giorgio Pettinari & Takashi Tanig, 2024. "Localisation-to-delocalisation transition of moiré excitons in WSe2/MoSe2 heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Xin Cong & Parisa Ali Mohammadi & Mingyang Zheng & Kenji Watanabe & Takashi Taniguchi & Daniel Rhodes & Xiao-Xiao Zhang, 2023. "Interplay of valley polarized dark trion and dark exciton-polaron in monolayer WSe2," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    14. Shun Feng & Aidan J. Campbell & Mauro Brotons-Gisbert & Daniel Andres-Penares & Hyeonjun Baek & Takashi Taniguchi & Kenji Watanabe & Bernhard Urbaszek & Iann C. Gerber & Brian D. Gerardot, 2024. "Highly tunable ground and excited state excitonic dipoles in multilayer 2H-MoSe2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:574:y:2019:i:7776:d:10.1038_s41586-019-1591-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.